Aprendizaje constructivo, autorregulado, situado y colaborativo: un acercamiento a la adquisición de la competencia adaptativa (matemática).

Autores/as

  • Erik De Corte European Association for Research on Learning and Instruction Universidad de Stanford

DOI:

https://doi.org/10.22235/pe.v8i2.690

Palabras clave:

aprendizaje constructivo, autorregulación, competencia adaptativa, matemáticas, educación primaria

Resumen

Resumen. Actualmente, en una sociedad de aprendizaje, la educación debe centrarse en fomentar la Competencia Adaptativa (AC por sus siglas en inglés: Adaptative Competence) que se define como la habilidad de aplicar de manera flexible conocimientos y destrezas en diferentes contextos. En este artículo se discuten tres preguntas: ¿Qué deben aprender los estudiantes a fin de adquirir la AC en un campo particular? ¿Cuáles son las características que se requieren en un proceso de aprendizaje productivo para obtener la competencia adaptativa? ¿Cómo se puede estimular y prolongar este aprendizaje a través de la instrucción? Este artículo presenta un estudio ilustrativo enfocado en el diseño de un ambiente de aprendizaje para mejorar la competencia de resolución de problemas en estudiantes de educación primaria. Las acotaciones finales indican los retos de la implementación de ambientes de aprendizaje innovadores.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Erik De Corte, European Association for Research on Learning and Instruction Universidad de Stanford

Profesor Emérito de Psicología Educacional en la Facultad de Psicología y Ciencias de la Educación de la Universidad Católica de Lovaina, Bélgica, donde fue Director de su Departamento de Ciencias de la Educación (1994-1998). Su principal interés de investigación es contribuir al desarrollo de las teorías del aprendizaje desde la enseñanza y al diseño de ambientes poderosos de aprendizaje, con foco en el aprendizaje, la enseñanza y la evaluación del pensamiento y la resolución de problemas. Fue el primer presidente de la EARLI (European Association for Research on Learning and Instruction). Durante el año académico 2005-2006 fue Fellow en el Center for Advanced Study in the Behavioral Sciences de la Universidad de Stanford.

Citas

Alfieri, L., P.J. Brooks, N.J. Aldrich y H.R. Tenenbaum (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology 103, 1-18.

Bendixen, L.D. y Feucht F.C. (eds.) (2010) Personal epistemology in the classroom: Theory, research, and implications for practice. Cambridge, UK: Cambridge University Press.

Berliner, D.C. (2008). Research, policy, and practice: The great disconnect. En S.D. Lapan & M.T. Quartaroli (eds.) Research essentials: An introduction to designs and practices (pp. 295-325). Hoboken, NJ: Jossey-Bass.

Berry, J., & Sahlberg, P. (1996). Investigating pupils’ ideas of learning. Learning and Instruction, 6, 19-36.

Boekaerts, M., Pintrich, P.R. & Zeidner (eds.) (2000). Handbook of self-regulation. San Diego: Academic Press.

Bransford, J., Stevens, R., Schwartz, D., Meltzoff, A., Pea, R., Roschelle, J., Vye, N., Kuhl, P., Bell, P., Barron, B., Reeves, B., & Sabelli, N. (2006). Learning theories and education: Toward a decade of synergy. En P.A. Alexander & P.H. Winne (eds.) Handbook of Educational Psychology (2nd. ed.) (pp 209-244). Mahwah, NJ: Lawrence Erlbaum Associates.

Brown, A.L., & Campione, J.C. (1994). Guided discovery in a community of learners. In K. McGilly (ed.) Classroom lessons: Integrating cognitive theory and classroom practice (pp. 229-270). Cambridge, MA: The MIT Press.

Brown, A. L., & Palincsar, A. S. (1989). Guided, cooperative learning and individual knowledge acquisition. En L.B. Resnick (ed.) Knowing, learning and instruction. Essays in honor of Robert Glaser (pp. 393-451). Hillsdale, NJ: Erlbaum.

Brown, R., Pressley, M., Van Meter, P., & Schuder, T. (1996). A quasi-experimental validation of transactional strategies instruction with low-achieving second-grade readers. Journal of Educational Psychology, 88, 18-37.

Bruner, J.S. (1961). The act of discovery. Harvard Educational Review 31, 21-32.

Chi, M.T.H., Feltovich, P.J.,& Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121-125.

Chi, M.T.H., Glaser, R., & Farr, M.J. (1988). The nature of expertise. Hillsdale, NJ: Lawrence Erlbaum Associates.

Cognition and Technology Group at Vanderbilt (1997). The Jasper Project: Lessons in curriculum, instruction, assessment, and professional development. Mahwah, NJ: Lawrence Erlbaum Associates.

De Corte, E. (1995). Learning theory and instructional science. En P. Reiman & H. Spada (eds.) Learning in humans and machines. Towards an interdisciplinary learning science (pp. 97-108). Oxford, UK: Elsevier Science.

De Corte, E. (2003). Transfer as the productive use of acquired knowledge, skills, and motivations. Current Directions in Psychological Science, 12, 142-146.

De Corte, E. (2007). Learning from instruction: The case of mathematics. Learning Inquiry, 1, 19-30.

De Corte, E. (2010). Historical developments in the understanding of learning. En H. Dumont, D. Istance, & F. Benavides (eds.) The nature of learning. Using research to inspire practice (pp. 35-67). París: OECD Publishing.

De Corte, E., Depaepe, F., & Verschaffel, L. (2010). Fostering self-regulation skills in mathematics. En H. Pedrosa-de-Jesus, C. Evans, Z. Charlesworth & E. Cools (eds.) ELSIN XV, Proceedings of the 15th Annual Conference of the European Learning Styles Information Network: Exploring styles to enhance learning and teaching in diverse contexts (pp. 133-139). Aveiro, Portugal: Universidade de Aveiro.

De Corte, E., Greer, B, & Verschaffel, L. (1996). Mathematics teaching and learning. En D.C. Berliner & R.C. Calfee (eds.) Handbook of educational psychology (491-549). New York, NY: Macmillan.

De Corte, E., Mason, L., Depaepe, F., & Verschaffel, L. (2011). Self-regulation of mathematical knowledge and skills. En B.J. Zimmerman & D.H. Schunk (eds.), Handbook of self-regulation of learning and performance (pp. 155-172). New York, NY: Routledge.

De Corte, E., & Verschaffel, L. (1987). The effect of semantic structure on first graders’ strategies for solving addition and subtraction word problems. Journal for Research in Mathematics Education, 18, 363-381.

De Corte, E., Verschaffel, L., & Masui, C. (2004). The CLIA-model: A framework for designing powerful learning environments for thinking and problem solving. European Journal of Psychology of Education, 19, 365-384.

De Corte, E., Verschaffel, L .& Op ‘t Eynde P. (2000). Self-regulation: A characteristic and a goal of mathematics education. En P. Pintrich, M. Boekaerts, & M. Zeidner (Eds.), Self-regulation: Theory, research, and applications (pp. 687-726). Mahwah, NJ: Lawrence Erlbaum Associates.

De Corte, E., Verschaffel, L., & Van de Ven, A. (2001). Improving text comprehension strategies in upper primary school children: A design experiment. BritishJournal of Educational Psychology, 71, 531-559.

Depaepe, F., De Corte, E., & Verschaffel, L. (2007). Unravelling the culture of the mathematics classroom: A video-based study in sixth grade. International Journal of Educational Research, 46, 266-279.

Dewey, J. (1916). Democracy and education. New York, NY: Macmillan.

Dignath, C., & Büttner, G. (2008). Components of fostering self-regulated learning among students. A meta-analysis on intervention studies at primary and secondary school level. Metacognition and Learning, 3, 231-264.

Dignath, C., Buettner, G, & Langfeldt, H. (2008). How can primary school students learn self-regulated learning strategies most effectively? A meta-analysis on self-regulation training programmes. Educational Research Review, 3, 101-129.

Ericsson, K.A. (2003). The acquisition of expert performance as problem solving: Construction and modification of mediating mechanisms through deliberate practice. In J.E. Davidson & R.J. Sternberg (eds.), The psychology of problem solving (pp. 31-83). Cambridge, UK: Cambridge University Press.

European Round-Table of Industrialists (ERT) (1995). Education for Europeans: Towards a learning society. Bruselas: ERT.

Garner, R. (1987). Metacognition and reading comprehension. Norwood, NJ: Ablex.

Hatano, G. (1996). A conception of knowledge acquisition and its implications for mathematics education. In L.P. Steffe, P. Nesher, P. Cobb, J. Kilpatrick, & B. Greer (eds.), Theories of mathematical learning (pp. 197-217). Mahwah, NJ: Lawrence Erlbaum Associates.

Hatano, G., & Inagaki, K. (1986). Two courses of expertise. En H. Stevenson, H. Azuma, & K. Hakuta (eds.), Child development and education in Japan (pp. 262-272). New York, NY: Freeman.

Hatano, G., & Oura, Y. (2003). Commentary. Reconceptualizing school learning using insightfrom expertise research. Educational Researcher, 32(8), 26-29.

Kirby, J.R., & Lawson, M.J. (2012). Enhancing the quality of learning. Dispositions, instruction, and learning processes. Cambridge, UK: Cambridge University Press.

Kirschner, P.A., Sweller, J., & Clark, R.E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41, 75-86.

Kirshner, D., & Whitson, J.A. (eds.) (1997) Situated cognition: Social, semiotic, and psychological perspectives. Mahwah, NJ: Lawrence Erlbaum Associates.

Lehtinen, E. (2003). Computer-supported collaborative learning: An approach to powerful learning environments. En E. De Corte, L. Verschaffel, N. Entwistle & J. van Merriënboer (eds.) Powerful learning environments: Unravelling basic componentsand dimensions (pp. 35-53). (Advances in Learning and Instruction Series.) Oxford, UK: Elsevier Science Ltd.

Mason, L., & Scrivani, L. (2004). Enhancing students’ mathematical beliefs: An intervention study. Learning and Instruction, 14, 153-176.

Mayer, R.E. (2004). Should there be a three-strikes rule against pure discovery learning? American Psychologist, 59, 14-19.

National Research Council. (2000). How people learn: Brain, mind, experience, and school. J.D. Bransford, A.L. Brown, & R.R. Cocking (eds.). Committee on Developments in the Science of Learning and Committee on Learning Research and Educational Practice. Washington, DC: National Academy Press.

National Research Council. (2005) How students learn: History, mathematics, and science in the classroom. Committee on How people learn, a targeted report for teachers, M.S. Donovan & J.D. Bransford (eds) Division of Behavioral and Social Sciences and Education. Washington, DC: National Academy Press.

Nunes, T., Schliemann, A.D., & Carraher, D.W. (1993). Street mathematics and school mathematics. Cambridge, UK: Cambridge University Press.

Piaget, J. (1955). The child’s construction of reality. London, UK: Routledge and Kegan Paul.

Picker, S.H., & Berry, J.S. (2000). Investigating pupils’ images of mathematicians. Educational Studies in Mathematics, 43, 65-94.

Remillard, J.T. (2005). Examining key concepts in research on teachers’ use of mathematics curricula. Review of Educational Research, 75, 211-246.

Salomon, G. (Ed.). (1993). Distributed cognition. Psychological and educational considerations. Cambridge, UK: Cambridge University Press.

Salomon, G., & Perkins, D.N. (1998). Individual and social aspects of learning. En P.D. Pearson & A. Iran-Nejad (eds.), Review of research in education (vol. 23, pp. 1-24). Washington, DC: American Educational Research Association.

Scardamalia, M., Bereiter, C., & Steinbach, R. (1984). Teachability of reflective processes in written composition. Cognitive Science, 8, 173-190.

Schmidt, H.G., Loyens, S.M.M., van Gog, T., & Paas, F. (2007). Problem-based learning is compatible with human cognitive architecture: Commentary on Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42, 91-97.

Schoenfeld, A.H. (1985). Mathematical problem solving.

New York, NY: Academic Press.

Schoenfeld, A.H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. En D.A. Grouws (ed.), Handbook of research on mathematics teaching and learning (pp. 334-370). New York, NY: Macmillan.

Schommer, M. (1994a). An emerging conceptualization of epistemological beliefs and their role in learning. En R. Garner & P. Alexander (Eds.), Beliefs about text and about text instruction (pp. 25-39). Hillsdale, NJ: Lawrence Erlbaum Associates.

Schommer, M. (1994b). Synthesizing epistemological beliefs research: Tentative understandings and proactive confusions. Educational Psychology Review, 6, 293-319.

Schraw, G. (2006). Knowledge structures and processes. En P.A. Alexander & P.H. Winne (Eds.), Handbook of educational psychology. (2nd. ed.) (pp. 245-263). Mahwah, NJ: Lawrence Erlbaum Associates.

Sfard, A. (1998).On two metaphors for learning and the dangers of choosing just one. Educational Researcher, 27(2), 4-13.

Simons, R.J., van der Linden, J., & Duffy, T. (Eds.). (2000). New learning. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Slavin, R.E. (2010). Co-operative learning: What makes group-work work? En H. Dumont, D. Istance, & F. Benavides (eds.), The nature of learning. Using research to inspire practice (pp. 161-178). París: OECD Publishing.

Stinissen, J., Mermans, M., Tistaert, G. & Vander Steene, G. (1985). Leuvense Schoolvorderingentest Vernieuwde Wiskunde 2-6. [Leuven Standard Achievement Test New Mathematics 2-6] Brussel: C.S.B.O.

Songer, N.B., & Linn, M.C. (1991). How do students’ views of science influence knowledge integration? Journal of Research in Science Teaching, 28, 761-784.

Stokes, L.M., Sato, N.E., McLaughlin, M.W., & Talbert, J.E. (1997). Theory-based reform and problems of change: Contexts that matter for teachers' learning and community. Stanford, CA: Center for Research on the Context of Secondary Teaching, School of Education, Stanford University.

Timperley, H. (2008). Teacher professional learning and development. (Educational Practices Series, 18). Geneva, CH: International Bureau of Education.

Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition and Learning,1, 3-14.

Verschaffel, L., De Corte, E., Lasure, S., Van Vaerenbergh, G., Bogaerts, H., y Ratinckx, E. (1999). Learning to solve mathematical application problems: A design experiment with fifth graders. Mathematical Thinking and Learning, 1, 195-229.

Wineburg, S. (1991). Historical problem solving: A study of the cognitive processes used in the evaluation of documentary and pictorial evidence. Journal of Educational Psychology, 83, 73-83.

Wood, T., Cobb, P., & Yackel, E. (1991). Change in teaching mathematics: A case study. American Educational Research Journal, 28, 587-616.

Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27, 458-477.

Zimmerman, B.J. (1994). Dimensions of academic self-regulation: A conceptual framework for education. En D.H. Schunk & B.J. Zimmerman (eds.), Self-regulation of learning and performance: Issues and educational applications (pp. 3-21). Hillsdale, NJ: Lawrence Erlbaum Associates.

Zimmerman, B.J., & Risemberg, R. (1997). Self-regulatory dimensions of academic learning and motivation. En G.D. Phye (Ed.), Handbook of academic learning: Construction of knowledge (pp. 105-125). San Diego, CA: Academic Press.

Zimmerman, B.J., & Schunk, D.H. (eds.). (2011). Handbook of self-regulation of learning and performance. New York, NY: Routledge.

Descargas

Publicado

2015-12-18

Cómo citar

De Corte, E. (2015). Aprendizaje constructivo, autorregulado, situado y colaborativo: un acercamiento a la adquisición de la competencia adaptativa (matemática). Páginas De Educación, 8(2), 177–200. https://doi.org/10.22235/pe.v8i2.690

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede {advancedSearchLink} para este artículo.