Validity and reliability of the brief version of the Symptom Checklist SA-45
DOI:
https://doi.org/10.22235/cp.v18i2.3556Keywords:
psychological symptoms, validity, measurement invariance, reliability, assessmentAbstract
Given the prevalence of mental disorders and elevated psychological symptoms, there has been a call for action to scale up health services. To provide optimal care, detecting symptoms early and evaluating the psychological state is essential. Self-report measures are useful to evaluate specific diagnoses and explore psychological symptoms. The present study aimed to provide new psychometric evidence of the Argentine version of the Brief Symptoms Checklist. Through non-probabilistic and intentional sampling, 760 individuals aged 18 to 63 (M = 28.1; SD = 8.61) were selected. Confirmatory factor analysis showed that the nine correlated factors model exhibited the best-fit indices and yielded full configural, metric and scalar invariance across gender and region. The factors mainly showed adequate reliability values similar to previous research. T values are provided as population-based norms. The results showed that the instrument is valid and reliable, and could be a valuable tool in various contexts, particularly in primary care, where the evaluation requires a very short time and useful information.
Downloads
References
Alvarado, B. G., Sandín, B., Valdez-Medina, J. L., González-Arratia, N., & Rivera, S. (2012). Análisis factorial confirmatorio del Cuestionario SA-45 en una muestra mexicana. Anales De Psicología, 28(2), 426-433. https://doi.org/10.6018/analesps.28.2.148851
American Psychological Association (2010). Ethical principles of psychologists and code of conduct. www.apa.org/ethics/code/principles.pdf
Arrindell, W. A., Barelds, D. P. H., Janssen, I. C. M., Buwalda, F. M., & van der Ende, J. (2006). Invariance of SCL-90-R dimensions of symptom distress in patients with peri partum pelvic pain (PPPP) syndrome. British Journal of Clinical Psychology, 45(3), 377-391. https://doi.org/10.1348/014466505X68924
Ato, M., López, J. J. & Benavente, A. (2013). Un sistema de clasificación de los diseños de investigación en psicología. Anales de Psicología, 29, 1038-1059. https://doi.org/10.6018/analesps.29.3.178511
Brown, T. A. (2015). Confirmatory factor analysis for applied research. Guilford publications.
Byrne, B. M. (2016). Multigroup comparisons: Testing for measurement, structural, and latent mean equivalence. In F. T. L. Leong, D. Bartram, F. M. Cheung, K. F. Geisinger, & D. Iliescu (Eds.), The ITC international handbook of testing and assessment (pp. 377-394). Oxford University Press.
Casullo, M. M. (1998). El inventario SCL-90-R. Departamento de Publicaciones. Facultad de Psicología. Universidad de Buenos Aires.
Chalmers, R. P. (2018). On Misconceptions and the Limited Usefulness of Ordinal Alpha. Educational and Psychological Measurement, 78(6). https://doi.org/10.1177/0013164417727036
Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling, 14(3), 464-504. https://doi.org/10.1080/10705510701301834
Cía, A. H., Stagnaro, J. C., Aguilar Gaxiola, S., Vommaro, H., Loera, G., Medina-Mora, M. E., Sustas, S., Benjet, C., & Kessler, R. C. (2018). Lifetime prevalence and age-of-onset of mental disorders in adults from the Argentinean Study of Mental Health Epidemiology. Social psychiatry and psychiatric epidemiology, 53(4), 341-350. https://doi.org/10.1007/s00127-018-1492-3
Cortina, J. M. (1993). What is coefficient alpha? An examination of theory andapplications. Journal of Applied Psychology (1), 98. https://doi.org/10.1037/0021-9010.78.1.98
Dattani, S., Ritchie, H., & Roser, M. (2021). Mental Health. Our World in Data. https://ourworldindata.org/mental-health
Davison, M., Bershadsky, B., Bieber, J., Silversmith, D., Maruish, M. E., & Kane, R. L. (1997). Development of a brief, multidimensional, self-Report instrument for treatment outcomes assessment in psychiatric settings: Preliminary Findings. Assessment, 4(3), 259-276. https://doi.org/10.1177/107319119700400306
Derogatis, L. R. (1977). SCL-90R (revised version) manual I. Johns Hopkins University School of Medicine.
Derogatis, L. R., & Cleary, P. A. (1977). Confirmation of the dimensional structure of the SCL-90: A study in construct validation. Journal of Clinical Psychology, 33(4), 981-989. https://doi.org/10.1002/1097-4679(197710)33:4<981::AID-JCLP2270330412>3.0.CO;2-0
Derogatis, L. R., & Savitz, K. L. (1999). The SCL-90-R, brief symptom inventory, and matching clinical rating scales. In M. E. Maruish (Ed.), The use of psychological testing for treatment planning and outcomes assessment (2nd ed., pp. 679-724). Lawrence Erlbaum Associates Publishers.
Derogatis, L.R. (1994). SCL-90-R. Symptom Checklist-90-R. Administration, Scoring and Procedures Manual. National Computer System.
Etchevers, M. J., Garay, C. J., Putrino, N., Grasso, J., Helmich, N., & Rojas, L. (2021). Relevamiento del estado psicológico de la población argentina. Observatorio de Psicología Social Aplicada, Facultad de Psicología, Universidad de Buenos Aires. http://www.psi.uba.ar/opsa/#informes
Flora, D. B. (2020). Your coefficient alpha is probably wrong, but which coefficient omega is right? A tutorial on using R to obtain better reliability estimates. Advances in Methods and Practices in Psychological Science, 3(4), 484-501. https://doi.org/10.1177%2F2515245920951747
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312
Gallucci, M., & Jentschke, S. (2021). SEMLj: jamovi SEM Analysis. [jamovi module]. https://semlj.github.io/
Global Burden of Disease 2017 Risk Factor Collaborators. (2018). Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392(10159), 1923-1994. https://doi.org/10.1016/S0140-6736(18)32225-6
Góngora, V., & Castro Solano, A. (2021). Validación del SCL-27 en población general y en población clínica argentina. Psicodebate, 21(1), 49-60. https://doi.org/10.18682/pd.v21i1.4018
Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. Psychometrika, 74(1), 155-167. https://doi.org/10.1007/s11336-008-9099-3
Groth-Marnat, G. (2009). Handbook of psychological assessment. John Wiley & Sons.
Hair, J., Black, W., Babin, B., & Anderson, R. (2010). Multivariate data analysis (7th ed.). Prentice-Hall.
Holgado-Tello, F. P., Vila-Abad, E., & Barbero-García, M. (2019). Estructura interna del Symptom Assessment-45 Questionnaire (SA-45). Acción Psicológica, 16(1), 31-42. https://doi.org/10.5944/ap.16.1.22048
Hoyle, R. H. (1995). The structural equation modeling approach: Basic concepts and fundamental issues. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 1-15). Sage Publications, Inc.
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
Kyriazos, T. A. (2018). Applied psychometrics: sample size and sample power considerations in factor analysis (efa, CFA) and SEM in general. Psychology, 9, 2207-2230. https://doi.org/10.4236/psych.2018.98126
Li, C.-H. (2016). The performance of ML, DWLS, and ULS estimation with robust corrections in structural equation models with ordinal variables. Psychological Methods, 21(3), 369-387. https://doi.org/10.1037/met0000093
Maruish, M. E. (2004). Symptom Assessment-45 Questionnaire (SA-45). In M. E. Maruish (Ed.), The use of psychological testing for treatment planning and outcomes assessment: Instruments for adults (pp. 43-78). Lawrence Erlbaum Associates Publishers.
Maruish, M. E., Bershadsky, B., & Goldstein, L. (1998). Reliability and validity of the SA-45: Further evidence from a primary care setting. Assessment, 5(4), 407-419. https://doi.org/10.1177/107319119800500410
Patel, V., Saxena, S., Lund, C., Thornicroft, G., Baingana, F., Bolton, P., Chisholm, D., Collins, P. Y., Cooper, J. L., Eaton, J., Herrman, H., Herzallah, M. M., Huang, Y., Jordans, M. J. D., Kleinman, A., Medina-Mora, M. E., Morgan, E., Niaz, U., Omigbodun, O., Prince, M., … UnÜtzer, J. (2018). The Lancet Commission on global mental health and sustainable development. Lancet, 392(10157), 1553-1598. https://doi.org/10.1016/S0140-6736(18)31612-X
Preti, A., Carta, M. G., & Petretto, D. R. (2019). Factor structure models of the SCL-90-R: Replicability across community samples of adolescents. Psychiatry Research, 272, 491-498. https://doi.org/10.1016/j.psychres.2018.12.146
Putnick, D. L., & Bornstein, M. H. (2016). Measurement Invariance Conventions and Reporting: The State of the Art and Future Directions for Psychological Research. Developmental review: DR, 41, 71-90. https://doi.org/10.1016/j.dr.2016.06.004
Rhemtulla, M., Brosseau-Liard, P. E., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17, 354-373. https://doi.org/10.1037/a0029315
Rodríguez Espínola, S., Chong Cevallos, M., & Paternó Manavella, M. A. (2019). Informe técnico: condiciones de la salud en el área metropolitana de Buenos Aires. Observatorio de la deuda social argentina. Universidad Católica Argentina. https://repositorio.uca.edu.ar/bitstream/123456789/9080/1/informe-condiciones-salud-buenos-aires.pdf
Rosseel, Y. (2019). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. https://doi.org/10.18637/jss.v048.i02
Sandín, B., Valiente, R., Chorot, P., Santed, M., & Lostao, L. (2008). SA-45: forma abreviada del SCL-90. Psicothema, 20(2), 290-296.
Stagnaro, J. C., Cía, A., Vázquez, N., Vommaro, H., Nemirovsky, M., Serfaty, E., Sustas, S. E., Medina Mora, M. E., Benjet, C., Aguilar-Gaxiola, S., & Kessler, R. (2018). Estudio epidemiológico de salud mental en población general de la República Argentina. Vertex. Revista Argentina de Psiquiatría, 29(142), 275-299.
van de Schoot, R., Lugtig, P., &Hox, J. (2012). A checklist for testing measurement invariance. European Journal of Developmental Psychology, 9(4), 486-492. https://doi.org/10.1080/17405629.2012.686740
Vizioli, N., & Crespi, C. (2020). Factores estresantes y sintomatología psicológica durante el aislamiento social preventivo obligatorio por COVID-19 en población adulta de Buenos Aires. Subjetividad y Procesos Cognitivos, 24(2), 17-41.
Wang, S., Chen, C. C., Dai, C. L., & Richardson, G. B. (2018). A call for, and beginner’s guide to, measurement invariance testing in evolutionary psychology. Evolutionary Psychological Science, 4(2), 166-178. https://doi.org/10.1007/s40806-017-0125-5
World Health Organization (2022). World mental health report; Transforming mental health for all.. http://hdl.handle.net/10713/20295
World Medical Association. (2013). Declaration of Helsinki. Ethical principles for medical research involving human subjects. JAMA Network, 310(20), 2191-2194. https://doi.org/10.1001/jama.2013.281053
Zumbo, B. D., Gadermann, A. M., & Zeisser, C. (2007). Ordinal versions of coefficients alpha and theta for Likert rating scales. Journal of Modern Applied Statistical Methods, 6, 21-29. https://doi.org/10.22237/jmasm/1177992180
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciencias Psicológicas
This work is licensed under a Creative Commons Attribution 4.0 International License.