Satisfacción con la enseñanza online en estudiantes universitarios: análisis estructural de una escala

Autores/as

DOI:

https://doi.org/10.22235/cp.v17i2.3193

Palabras clave:

satisfacción con enseñanza online, educación superior, validez, confiabilidad, educación a distancia

Resumen

El objetivo de esta investigación fue analizar la estructura interna y confiabilidad de la Student Satisfaction Survey (SSS) en estudiantes universitarios peruanos. Participaron 458 estudiantes (mujeres = 69.9 %; Medad = 27.76 años; DEedad = 4.41 años). La SSS se estudió bajo el análisis factorial confirmatorio (AFC) y el modelamiento exploratorio de ecuaciones estructurales (ESEM). Respecto a los resultados, el modelo original de cinco dimensiones obtuvo índices de ajuste favorables con ESEM, pero las dimensiones interacciones alumno-profesor e interacciones alumno-alumno se superponen entre sí, por lo que se valoró un modelo de cuatro dimensiones que presentó mejores evidencias psicométricas. La confiabilidad de las puntuaciones y de constructo presenta magnitudes aceptables. Se concluye que el SSS cuenta con propiedades psicométricas adecuadas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alqurashi, E. (2019). Predicting student satisfaction and perceived learning within online learning environments. Distance Education, 40(1), 133-148. https://doi.org/10.1080/01587919.2018.1553562

Álvarez, M., Gardyn, N., Iardelevsky, A., & Rebello, G. (2020). Segregación educativa en tiempos de pandemia: Balance de las acciones iniciales durante el aislamiento social por el Covid-19 en Argentina. Revista Internacional de Educación para la Justicia Social, 9(3), 25-43.

Amir, L. R., Tanti, I., Maharani, D. A., Wimardhani, Y. S., Julia, V., Sulijaya, B., & Puspitawati, R. (2020). Student perspective of classroom and distance learning during COVID-19 pandemic in the undergraduate dental study program Universitas Indonesia. BMC Medical Education, 20(1), 1-8. https://doi.org/10.1186/s12909-020-02312-0

Asparouhov, T., & Muthén, B. O. (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16(3), 397-438. http://doi.org/10.1080/10705510903008204

Asparouhov, T., Muthen, B., & Morin, A. J. S. (2015). Bayesian structural equation modeling with cross-loadings and residual covariances. Journal of Management, 41(6), 1561-1577. http://doi.org/10.1177/0149206315591075

Ato, M., López-García, J. J., & Benavente, A. (2013). Un sistema de clasificación de los diseños de investigación en psicología. Anales de Psicología, 29(3), 1038-1059. https://doi.org/10.6018/analesps.29.3.178511

Basith, A., Rosmaiyadi, R., Triani, S. N., & Fitri, F. (2020). Investigation of online learning satisfaction during COVID 19: In relation to academic achievement. Journal of Educational Science and Technology, 6, 265-275. https://doi.org/10.26858/est.v1i1.14803

Baturay, M. H. (2011). Relationships among sense of classroom community, perceived cognitive learning and satisfaction of students at an e-learning course. Interactive Learning Environments, 19(5), 563-575. https://doi.org/10.1080/10494821003644029

Benites, R. (2021). La educación superior universitaria en el Perú post-pandemia. Políticas y Debates públicos. https://repositorio.pucp.edu.pe/index/handle/123456789/176597

Bernard, R. M., Abrami, P. C., Borokhovski, E., Wade, C. A., Tamim, R. M., Surkes, M. A., & Bethel, E. C. (2009). A meta-analysis of three types of interaction treatments in distance education. Review of Educational Research, 79(3), 1243-1289. https://doi.org/10.3102/0034654309333844

Best, B., & Conceição, S. C. O. (2017). Transactional distance dialogic interactions and student satisfaction in a multi-institutional blended learning environment. European Journal of Open, Distance and e-Learning, 20(1), 138-152.

Brown, T. A. (2015). Confirmatory factor analysis for applied research (2a ed.). Guilford Press.

Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. En K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 445-455). Sage.

Chen, W. S., & Tat Yao, A. Y. (2016). An empirical evaluation of critical factors influencing learner satisfaction in blended learning: a pilot study. Universal Journal of Educational Research, 4(7), 1667-1671. https://doi.org/10.13189/ujer.2016.040719

Chung, E., Subramaniam, G., & Dass, L. C. (2020). Online learning readiness among university students in Malaysia amidst COVID19. Asian Journal of University Education, 16(2), 46-58.

Díaz, V. M., Urbano, E. R., & Berea, G. M. (2013). Ventajas e inconvenientes de la formación online. Revista Digital de Investigación en Docencia Universitaria, 7(1), 33-43. https://doi.org/10.19083/ridu.7.185

DiStefano, C., Liu, J., Jiang, N., & Shi, D. (2018). Examination of the weighted root mean square residual: Evidence for trustworthiness? Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 453-466. https://doi.org/10.1080/10705511.2017.1390394

Dominguez-Lara, S. (2018a). Propuesta de puntos de corte para cargas factoriales: una perspectiva de confiabilidad de constructo. Enfermería Clínica, 28(6), 401-402. https://doi.org/10.1016/j.enfcli.2018.06.002

Dominguez-Lara, S. (2018b). Reporte de las diferencias confiables en el perfil del ACE-III. Neurología, 33(2), 138-139. http://doi.org/10.1016/j.nrl.2016.02.022

Dominguez-Lara, S., Gravini-Donado, M., Moreta-Herrera, R., Quistgaard-Alvarez, A., Barboza-Zelada, L. A., & De Taboada, L. (2022). Propiedades psicométricas del Student Adaptation to College Questionnaire - Educación Remota en estudiantes universitarios de primer año durante la pandemia. Campus Virtuales, 11(1), 81-93. https://doi.org/10.54988/cv.2022.1.965

Donnellan, M. B., & Rakhshani, A. (2023). How does the number of response options impact the psychometric properties of the Rosenberg Self-Esteem Scale? Assessment, 30(6), 1737-1749. https://doi.org/10.1177/10731911221119532

Ekwunife-Orakwue, K. C., & Teng, T. L. (2014). The impact of transactional distance dialogic interactions on student learning outcomes in online and blended environments. Computers & Education, 78, 414-427. https://doi.org/10.1016/j.compedu.2014.06.011

Eryilmaz, M. (2015). The effectiveness of blended learning environments. Contemporary Issues in Education Research, 8(4), 251-256. https://doi.org/10.19030/cier.v8i4.9433

Etikan, I. (2016). Comparison of Convenience Sampling and Purposive Sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1. https://doi.org/10.11648/j.ajtas.20160501.11

Gignac, G. E., Bates, T. C., & Jang, K. (2007). Implications relevant to CFA model misfit, reliability, and the Five Factor Model as measured by the NEO-FFI. Personality and Individual Differences, 43(5), 1051-1062. https://doi.org/10.1016/j.paid.2007.02.024

Gravetter, F., & Wallnau, L. (2014). Essentials of Statistics for the Behavioral Sciences. Wadsworth.

Gravini-Donado, M. L., Mercado-Peñaloza, M., & Dominguez-Lara, S. (2021). College Adaptation Among Colombian Freshmen Students: Internal Structure of the Student Adaptation to College Questionnaire (SACQ). Journal of New Approaches in Educational Research, 10(2), 251-263. http://doi.org/ 10.7821/naer.2021.7.657

Hanna, D. E., Glowacki-Dudka, M., & Runlee, S. (2000). 147 practical tips for teaching online groups. Atwood.

Hanson, J., Bangert, A., & Ruff, W. (2016). A validation study of the what’s my school mindset? Survey. Journal of Educational Issues, 2(2), 244-266.

Hunsley, J., & Marsh, E. J. (2008). Developing criteria for evidence-based assessment: An introduction to assessment that work. En J. Hunsley & E. J. Marsh (Eds.), A guide to assessments that work (pp. 3-14). Oxford University Press.

Jan, S. K. (2015). The relationships between academic self-efficacy, computer self-efficacy, prior experience, and satisfaction with online learning. American Journal of Distance Education, 29(1), 30-40. https://doi.org/10.1080/08923647.2015.994366

Kang, D., & Park, M. J. (2022). Interaction and online courses for satisfactory university learning during the COVID-19 pandemic. The International Journal of Management Education, 20(3), 100678. https://doi.org/10.1016/j.ijme.2022.100678

Khan, J., & Iqbal, M. J. (2016). Relationship between student satisfaction and academic achievement in distance education: a case study of AIOU Islamabad. FWU Journal of Social Sciences, 10(2), 137-145.

Kong, S. C., Looi, C. K., Chan, T. W., & Huang, R. (2017). Teacher development in Singapore, Hong Kong, Taiwan, and Beijing for e-learning in school education. Journal of Computers in Education, 4(1), 5-25. https://doi.org/10.1007/s40692-016-0062-5

Kuo, Y. C. (2014). Accelerated online learning: Perceptions of interaction and learning outcomes among African American students. American Journal of Distance Education, 28(4), 241–252. https://doi.org/10.1080/08923647.2014.959334

Kuo, Y. C., Belland, B. R., Schroder, K. E., & Walker, A. E. (2014). K-12 teachers’ perceptions of and their satisfaction with interaction type in blended learning environments. Distance Education, 35(3), 360-381. https://doi.org/10.1080/01587919.2015.955265

Kuo, Y. C., Walker, A. E., Belland, B. R., & Schroder, K. E. E. (2013). A predictive study of student satisfaction in online education programs. International Review of Research in Open and Distributed Learning, 14(1), 16-39. https://doi.org/10.19173/irrodl.v14i1.1338

Lara, L., Monje, M. F., Fuster-Villaseca, J., & Dominguez-Lara, S. (2021). Adaptación y validación del Big Five Inventory para estudiantes universitarios chilenos. Revista Mexicana de Psicología, 38(2), 83-94.

Larson, R. B. (2018). Controlling social desirability bias. International Journal of Market Research, 61(5), 534-547. http://doi.org/10.1177/1470785318805305

Li, C. (2016a). Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares. Behavioral Research Methods, 48, 936-949. https://doi.org/10.3758/s13428-015-0619-7

Li, C. (2016b). The performance of ML, DWLS, and ULS estimation with robust corrections in structural equation models with ordinal variables. Psychological Methods, 21(3), 369-387. https://doi.org/10.1037/met0000093

Lloret-Segura, S., Ferreres-Traver, A., Hernández-Baeza, A., & Tomás-Marco, I. (2014). El análisis factorial exploratorio de los ítems: una guía práctica, revisada y actualizada. Anales de psicología, 30(3), 1151-1169. http://doi.org/10.6018/analesps.30.3.199361

Luo, N., Zhang, M., & Qi, D. (2017). Effects of different interactions on students’ sense of community in e-learning environment. Computers & Education, 115, 153-160. https://doi.org/10.1016/j.compedu.2017.08.006

Magadán-Díaz, M., & Rivas-García, J. I. (2022). Gamificación del aula en la enseñanza superior online: el uso de Kahoot. Campus Virtuales, 11(1), 137-152. https://doi.org/10.54988/cv.2022.1.978

Marsh, H. W., Morin, A. J. S., Parker, P. D., & Kaur, G. (2014). Exploratory structural equation modeling: An integration of the best features of exploratory and confirmatory factor analysis. Annual Review of Clinical Psychology, 10(1), 85-110. http://doi.org/10.1146/annurev-clinpsy-032813-153700

Martín-Rodríguez, Ó., Fernández-Molina, J. C., Montero-Alonso, M. Á., & González-Gómez, F. (2015). The main components of satisfaction with e-learning. Technology, Pedagogy and Education, 24(2), 267-277. https://doi.org/10.1080/1475939X.2014.888370

Mbwesa, J. K. (2014). Transactional distance as a predictor of perceived learner satisfaction in distance learning courses: A case study of bachelor of education arts program, University of Nairobi, Kenya. Journal of Education and Training Studies, 2(2), 176-188. https://doi.org/10.11114/jets.v2i2.291

McDonald, R. P., & Ho, M.-H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7(1), 64-82. https://doi.org10.1037/1082-989X.7.1.64

Mohamed, E., Ghaleb, A., & Abokresha, S. (2021). Satisfaction with online learning among Sohag University students. Journal of High Institute of Public Health, 51(2), 84-89. https://doi.org/10.21608/jhiph.2021.193888

Moore, M. (1993). Three types of interaction. En K. Harry, M. John & D. Keegan (Eds.), Distance education theory (pp. 19-24). Routledge.

Moore, M. G. (1997). Theory of transactional distance. En D. Keegan (Ed.), Theoretical Principles of Distance Education (pp. 22-38). Routledge.

Moore, M. G. (2007). Theory of transactional distance. En M. G. Moore (Ed.). Handbook of distance education (pp. 89-101). Lawrence Erlbaum.

Moore, M., & Kearsley, G. (2005). Distance education: A system view. Thomson-Wadsworth.

Moreta-Herrera, R., Vaca-Quintana, D., Quistgaard-Álvarez, A., Merlyn-Sacoto, M.-F., & Dominguez-Lara, S. (2022). Análisis psicométrico de la Escala de Cansancio Emocional en estudiantes universitarios ecuatorianos durante el brote de COVID-19. Ciencias Psicológicas, 16(1), e-2755. https://doi.org/10.22235/cp.v16i1.2755

Muñiz, J. (2003). Teoría clásica de los tests. Pirámide.

Muñiz, J., Elosua, P., & Hambleton, R. K. (2013). Directrices para la traducción y adaptación de los test: segunda edición. Psicothema, 25(2), 151-157. https://doi.org/10.7334/psicothema2013.24

Muthén, L. K., & Muthén, B.O. (1998-2015). Mplus User’s Guide. Muthén & Muthén.

Nortvig, A. M., Petersen, A. K., & Balle, S. H. (2018). A Literature review of the factors influencing e‑learning and blended learning in relation to learning outcome, student satisfaction and engagement. Electronic Journal of E-learning, 16(1), 46-55.

Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decision. Journal of Marketing Research, 17(4), 460-469. https://doi.org/10.1177/002224378001700405

Onditi, E. O., & Wechuli, T. W. (2017). Service quality and student satisfaction in higher education institutions: A review of literature. International Journal of Scientific and Research Publications, 7(7), 328-335.

Palloff, R. M., & Pratt, K. (2001). Lessons from the cyberspace classroom. The realities of online teaching. Jossey-Bass.

Palmer, S. R., & Holt, D. M. (2009). Examining student satisfaction with wholly online learning. Journal of Computer Assisted Learning, 25(2), 101-113. https://doi.org/10.1111/j.1365-2729.2008.00294.x

Pérez-Gil, J. A., Chacón, S. & Moreno, R. (2000). Validez de constructo: el uso de análisis factorial exploratorio-confirmatorio para obtener evidencias de validez. Psicothema, 12, 442-446.

Pham, L., Limbu, Y. B., Bui, T. K., Nguyen, H. T., & Pham, H. T. (2019). Does e-learning service quality influence e-learning student satisfaction and loyalty? Evidence from Vietnam. International Journal of Educational Technology in Higher Education, 16(1), 1-26. https://doi.org/10.1186/s41239-019-0136-3

Ponterotto, J., & Charter, R. (2009). Statistical extensions of Ponterotto and Ruckdeschel’s (2007) reliability matrix for estimating the adequacy of internal consistency coefficients. Perceptual and Motor Skills, 108(3), 878-886. https://doi.org/10.2466/PMS.108.3.878-886

Ramo, N. L., Lin, M. A., Hald, E. S., & Huang-Saad, A. (2021). Synchronous vs. asynchronous vs. blended remote delivery of introduction to biomechanics course. Biomedical Engineering Education, 1, 61-66. https://doi.org/10.1007/s43683-020-00009-w

Rubia, J. M. (2019). Revisión de los criterios para validez convergente estimada a través de la VarianRubiaza Media Extraída. Psychologia, 13(2), 25-41. https://doi.org/10.21500/19002386.4119

Sánchez-González, M., & Castro-Higueras, A. (2022). Mentorías para profesorado universitario ante la Covid-19: evaluación de un caso. Campus Virtuales, 11(1), 181-200. https://doi.org/10.54988/cv.2022.1.1000

Shackelford, J. L., & Maxwell, M. (2012). Sense of community in graduate online education: Contribution of learner to learner interaction. The International Review of Research in Open and Distributed Learning, 13(4), 228-249. https://doi.org/10.19173/irrodl.v13i4.1339

Strachota, E. (2003). Student satisfaction in online course: An analysis of the impact of learner-content, learner-instructor, learner-learner and learner-technology interaction [Disertación doctoral]. University of Wisconsin- Milwaukee.

Strachota, E. (2006). The use of survey research to measure student satisfaction in online courses. University of Missouri-St. Louis.

Teo, T. (2010). A structural equation modelling of factors influencing student teachers’ satisfaction with e-learning. British Journal of Educational Technology, 41(6), 150-152. https://doi.org/10.1111/j.1467-8535.2010.01110.x

Thurmond, V., & Wambach, K. (2004). Understanding interactions in distance education: A review of the literature. International Journal of Instructional Technology and Distance Learning, 1(1), 9-26.

Torrado, M., & Blanca, M. J. (2022). Assessing satisfaction with online courses: Spanish version of the Learner Satisfaction Survey. Frontiers in Psychology, 13, 875929. https://doi.org/10.3389/fpsyg.2022.875929

Vásquez-Pajuelo, L. (2019). Aprendizaje online: satisfacción de los universitarios con experiencia laboral. Review of Global Management, 5(2), 28-43. https://doi.org/10.19083/rgm.v5i2.1234

Vergara-Morales, J., Rodríguez-Vera, M., & Del Valle, M. (2022). Evaluación de las propiedades psicométricas del Cuestionario de Autorregulación Académica (SRQ-A) en estudiantes universitarios chilenos. Ciencias Psicológicas, 16(2), e-2837. https://doi.org/10.22235/cp.v16i2.2837

Watermeyer, R., Crick, T., Knight, C., & Goodall, J. (2020). COVID-19 and digital disruption in UK universities: afflictions and affordances of emergency online migration. Higher Education, 81(3), 623-641. https://doi.org/10.1007/s10734-020-00561-y

Waters, S., & Russell, W. (2016). Virtually ready? Pre-service teachers’ perceptions of a virtual internship experience. Research in Social Sciences and Technology, 1(1), 1-23.

Wei, H. C., Peng, H., & Chou, C. (2015). Can more interactivity improve learning achievement in an online course? Effects of college students’ perception and actual use of a course-management system on their learning achievement. Computers & Education, 83, 10-21. https://doi.org/10.1016/j.compedu.2014.12.013

West, S. G., Taylor, A. B., & Wu, W. (2012). Model fit and model selection in structural equation modeling. En R. H. Hoyle (Ed.), Handbook of Structural Equation Modeling (pp. 209-231). Guilford.

Ye, J-H., Lee, Y-S., & He, Z. (2022). The relationship among expectancy belief, course satisfaction, learning effectiveness, and continuance intention in online courses of vocational-technical teachers college students. Frontiers in Psychology, 13, 904319. https://doi.org/10.3389/fpsyg.2022.904319

Yılmaz, A., & Karataş, S. (2017). Development and validation of perceptions of online interaction scale. Interactive Learning Environments, 26(3), 337-354. http://doi.org/10.1080/10494820.2017.1333009

Publicado

2023-10-26

Cómo citar

Manrique-Millones, D., Lingán-Huamán, S. K., & Dominguez-Lara, S. (2023). Satisfacción con la enseñanza online en estudiantes universitarios: análisis estructural de una escala . Ciencias Psicológicas, 17(2), e-3193. https://doi.org/10.22235/cp.v17i2.3193

Número

Sección

ARTÍCULOS ORIGINALES

Artículos más leídos del mismo autor/a

Artículos similares

> >> 

También puede {advancedSearchLink} para este artículo.