Predictive ability of cognitive flexibility and planning in early mathematical competencies

Authors

DOI:

https://doi.org/10.22235/cp.v18i1.3277

Keywords:

executive functions, cognitive flexibility, early math skills, early childhood education

Abstract

It has been shown that early mathematical competencies play an important role in the learning of this discipline and that both cognitive flexibility and planning favor this process. However, most research has related executive functions to general mathematical outcomes, without taking into account that this discipline includes several components that vary in their cognitive complexity. Therefore, the aim of this research was to evaluate the predictive capacity of cognitive flexibility and planning in the logical-relational and numerical mathematical competencies of 106 children in early childhood education in Chilean schools, who were evaluated with two executive tasks and a test of early mathematical competencies. Correlations and multiple linear regression models were used for data analysis. The results showed that cognitive flexibility was a significant predictor of both logical-relational and numerical mathematical competencies, while planning was only a significant predictor of numerical competencies. These results confirm the importance of cognitive flexibility and planning in the development of early mathematical competencies, which could lead to specific interventions on these executive functions and thus favor the learning of mathematics in early education.

Downloads

Download data is not yet available.

References

Agencia de Calidad de la Educación. (2020). Informe de Resultados Nacionales TIMSS 2019. Ministerio de Educación, Gobierno de Chile.

Agudelo, N., Dansilio, S., & Beisso, A. (2016). Diferentes tareas de solución de problemas y funciones ejecutivas en niños de 7 a 12 años. Neuropsicología Latinoamericana, 8(2), 35-42.

Allen, K., Giofrè, D., Higgins, S., & Adams, J. (2021). Using working memory performance to predict mathematics performance 2 years on. Psychological Research, 85(5), 1986-1996. https://doi.org/10.1007/s00426-020-01382-5

Arán Filippetti, V., & Richaud, M. C. (2017). A structural equation modeling of executive functions, IQ and mathematical skills in primary students: Differential effects on number production, mental calculus and arithmetical problems. Child Neuropsychology, 23, 864-888. https://doi.org/10.1080/09297049.2016.1199665

Arias, P. (2020). Análisis resultados TIMSS 2019. Acción Educar. Agencia de Calidad de la Educación. Ministerio de Educación, Gobierno de Chile.

Arroyo, M. J., Korzeniowski, C. G., & Espósito, A. V. (2014). Habilidades de planificación y organización, relación con la resolución de problemas matemáticos en escolares argentinos. Eureka, 11(1), 52-64.

Bernal-Ruiz, F., Duarte, D., Jorquera, F., Maturana, D., Reyes, C., & Santibáñez, E. (2022) Memoria de trabajo y planificación como predictores de las competencias matemáticas tempranas. Suma Psicológica, 29(2), 129–137. https://doi.org/10.14349/sumapsi.2022.v29.n2.5

Bernal-Ruiz, F., Rodríguez-Vera, M., & Ortega, A. (2020). Estimulación de las funciones ejecutivas y su influencia en el rendimiento académico en escolares de primero básico. Interdisciplinaria. Revista de Psicología y Ciencias Afines, 37(1), 1-34. http://dx.doi.org/10.16888/interd.2020.37.1.6

Bisagno, E., Cadamuro, A., & Morra, S. (2023). Multiple influences of working memory capacity on number comprehension: The interplay with metacognition and number-specific prerequisites. Journal of Experimental Child Psychology, 226, 105568. https://doi.org/10.1016/j.jecp.2022.105568

Cai, D., Georgiou, G. K., Wen, M., & Das, J. P. (2016). The role of planning in different mathematical skills. Journal of Cognitive Psychology, 28(2), 234-241. http://dx.doi.org/10.1080/20445911.2015.1103742

Cameron, I. G. M., Watanabe, M., Pari, G., & Muñoz, D. P. (2010). Executive impairment in Parkinson’s disease: response automaticity and task switching. Neuropsychologia, 48(7), 1948-1957. https://doi.org/10.1016/j.neuropsychologia.2010.03.015

Cantin, R. H., Gnaedinger, E. K., Gallaway, K. C., Hesson-McInnis, M. S., & Hund, A. M. (2016). Executive functioning predicts reading, mathematics, and theory of mind during the elementary years. Journal of Experimental Child Psychology, 146, 66-78. https://doi.org/10.1016/j.jecp.2016.01.014

Cerda, G., & Pérez, C. (2015). Predictibilidad de las competencias matemáticas tempranas, predisposición desfavorable hacia la matemática, inteligencia lógica y factores de la convivencia escolar en el rendimiento académico en matemáticas. Pensamiento Educativo, Revista de Investigación Educacional Latinoamericana, 52(2), 189-202. https://doi.org/10.7764/PEL.52.2.2015.11

Cerda, G., Pérez, C., Moreno, C., Núñez, K., Quezada, E., Rebolledo, J., & Sáez, S. (2012). Adaptación de la versión española del Test de Evaluación Matemática Temprana de Utrecht en Chile. Estudios pedagógicos, 38(1), 235-253. https://dx.doi.org/10.4067/S0718-07052012000100014

Cerda, G., Pérez, C., Ortega-Ruiz, R., Lleujo, M., & Sanhueza, L. (2011). Fortalecimiento de competencias matemáticas tempranas en preescolares, un estudio chileno. Psychology, Society, & Education, 3(1), 23-39. https://doi.org/10.25115/psye.v3i1.550

Cervigni, M. A., & Stelzer, F. (2011). Desempeño académico y funciones ejecutivas en infancia y adolescencia. Una revisión de la literatura. Revista de Investigación en Educación, 9(1), 148-156.

Chakravarthy, V. S., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological Cybernetics. 103, 237-253. https://doi.org/10.1007/s00422-010-0401-y

Chan, J., & Scalise, N. (2022). Numeracy skills mediate the relation between executive function and mathematics achievement in early childhood. Cognitive Development, 62, 101154. https://doi.org/10.1016/j.cogdev.2022.101154

Cheung, S. K., & Chan, W. W. L. (2022). The roles of different executive functioning skills in young children’s mental computation and applied mathematical problem-solving. British Journal of Developmental Psychology, 40, 151-169. https://doi.org/10.1111/bjdp.12396

Chu, F. W., vanMarle, K., & Geary, D. C. (2016). Predicting children’s reading and mathematics achievement from early quantitative knowledge and domain-general cognitive abilities. Frontiers in Psychology, 7, 1-14. https://doi.org/10.3389/fpsyg.2016.00775

Clements, D.H., Sarama, J., & Germeroth, C. (2016). Learning executive function and early mathematics: Directions of causal relations. Early Childhood Research Quarterly, 36, 79-90. http://doi.org/10.1016/j.ecresq.2015.12.009

Comisión Nacional de Investigación Científica y Tecnológica (2010). Declaración de Singapur sobre la integridad en la investigación.

Cortés, A., Moyano, N., & Quile, A. (2019). The relationship between executive functions and academic performance in primary education: review and meta-analysis. Frontiers in Psychology, 10, 1-18. https://doi.org/10.3389/fpsyg.2019.01582

Coulanges, L., Abreu-Mendoza, R. A., Varma, S., Uncapher, M.R., Gazzaley, A., Anguera, J., & Rosenberg-Lee, M. (2021). Linking inhibitory control to math achievement via comparison of conflicting decimal numbers. Cognition, 214, 104767. https://doi.org/10.1016/j.cognition.2021.104767

Cueli, M., Areces, D., García, T., Alves, R. A., & González-Castro, P. (2020). Attention, inhibitory control and early mathematical skills in preschool students. Psicothema, 32(2), 237-244. https://doi.org/10.7334/psicothema2019.225

Deng, M., Cai, D., Zhou, X., & Leung, A. W. (2020). Executive function and planning features of students with different types of learning difficulties in Chinese junior middle school. Learning Disability Quarterly, 45(2), 134-143. https://doi.org/10.1177/0731948720929006

Diamond, A. (2020). Executive functions. In A. Gallagher, C. Bulteau, D. Cohen, & J. L. Michaud (Eds.). Handbook of Clinical Neurology, 173, 225-240. https://doi.org/10.1016/B978-0-444-64150-2.00020-4

Díaz, A., Martín, R., Jiménez, J.E., García, E., Hernández, S., & Rodríguez, C. (2012). Torre de Hanoi: datos normativos y desarrollo evolutivo de la planificación. European Journal of Education and Psychology, 5(1), 79-91. https://doi.org/10.30552/ejep.v5i1.81

Er-Rafiqi, M., Guerra, A., Le Gall, D., & Roy, A. (2022). Age-related changes of cognitive flexibility and planning skills in school-age Moroccan children. Applied Neuropsychology Child, 11(4), 669-680. https://10.1080/21622965.2021.1934471

Escobar, J. P., Rosas-Díaz, R., Ceric, F., Aparicio, A., Arango, P., Arroyo, R., Espinoza, V., Garolera, M., Pizarro, M., Porflitt, F., Ramírez, M. P., & Urzúa, D. (2018). El rol de las funciones ejecutivas en la relación entre el nivel socioeconómico y el desarrollo de habilidades lectoras y matemáticas. Cultura y Educación, 30(2), 368-392. https://doi.org/10.1080/11356405.2018.1462903

Fishbein, B., Foy, P., & Yin, L. (2021). TIMSS 2019 User Guide for the International Database (2a ed.). International Association for the Evaluation of Educational Achievement.

Fisk, E., & Lombardi, C.M. (2021). Are math and behavioral skills interrelated? A longitudinal analysis in early childhood. Developmental Psychology, 57(12), 2106-2118. https://doi.org/10.1037/dev0001273

Hughes, C., Ensor, R., Wilson, A., & Graham, A. (2010). Tracking executive function across the transition to school: a latent variable approach. Developmental Neuropsychology, 35(1), 20-36. https://doi.org/10.1080/87565640903325691

Injoque-Ricle, I., Barreyro, J. P., Calero, A., & Burin, D. (2014). Tower of London: Planning development in children from 6 to 13 years of age. Spanish Journal of Psychology, 17(e77), 1-7. https://doi.org/10.1017/sjp.2014.83

Kerlinger, F. N., & Lee, H. B. (2000). Foundations of Behavioral Research (4a ed.) Holt.

Krikorian, R., & Bartok, J. A. (1998). Developmental data for the Porteus Maze Test. The Clinical Neuropsychologist, 12(3), 305-310. https://doi.org/10.1076/clin.12.3.305.1984

Legare, C. H., Dale, M. T., Kim, S. Y., & Deák, G. O. (2018). Cultural variation in cognitive flexibility reveals diversity in the development of executive functions. Scientific Reports, 8(1), 1-14. https://doi.org/10.1038/s41598-018-34756-2

Levy, R., & Dubois, B. (2006). Apathy and the functional anatomy of the prefrontal cortex–basal ganglia circuits. Cerebral Cortex, 16(7), 916-928. https://doi.org/10.1093/cercor/bhj043

Limas, L.M., Novoa, P.F., Uribe, Y.C., Ramirez, Y.P., & Cancino, R.F. (2020). Competencias matemáticas en preescolares de cinco años según género. Eduser, 7(1), 41-48. https://doi.org/10.18050/eduser.v7i1.2424

Luria, A. R. (1966). Human brain and psychological processes. Harper and Row.

Magalhães, S., Carneiro, L., Limpo, T., & Filipe, M. (2020). Executive functions predict literacy and mathematics achievements: The unique contribution of cognitive flexibility in grades 2, 4, and 6. Child Neuropsychology, 26(7), 934-952. https://doi.org/10.1080/09297049.2020.1740188

Mattera, S. K., Morris, P. A., Jacob, R., Maier, M., & Rojas, N. (2017). Designing studies to test causal questions about early Math: The development of making Pre-K count. Advances in Child Development and Behavior, 53, 227-253. https://doi.org/10.1016/bs.acdb.2017.04.002

Mayer, R. E., & Hegarty, M. (1996). The process of understanding mathematical problems. In R. J. Sternberg & T. Ben-Zeev (Eds.), The Nature of Mathematical Thinking (pp. 29-53). Routledge. https://doi.org/10.4324/9780203053270

Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A., & Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: a latent variable analysis. Cognitive Psychology, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734

Moll, K., Kunze, S., Neuhoff, N., Bruder, J., & Schultekörne, G. (2014). Specific learning disorder: prevalence and gender differences. PLOS One, 9(7), e103537. https://doi.org/10.1371/journal.pone.0103537

Muchiut, A. (2019). Juego y función ejecutiva de planificación en niños de nivel inicial. Cuadernos de Neuropsicología, 13(2), 163-170.

Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive function. Cognitive, Affective, & Behavioral Neuroscience 12(2), 241-268. https://doi.org/10.3758/s13415-011-0083-5

Nunes de Santana, A., Roazzi, A., & Nobre, A.P.M.C. (2022). The Relationship between Cognitive Flexibility and Mathematical Performance in Children: A Meta-Analysis. Trends in Neuroscience and Education, 28, 100179. https://doi.org/10.1016/j.tine.2022.100179

Palacios, N., & Bohlmann, N. L. (2020). Self-regulation mediates the associations between demographic characteristics and Latino children's early achievement. Journal of Applied Developmental Psychology, 70, 101166. https://doi.org/10.1016/j.appdev.2020.101166

Pauli, W. M., O’Reilly, R. C., Yarkoni, T., & Wager, T. D. (2016). Regional specialization within the human striatum for diverse psychological functions. PNAS, 113, 1907-1912. https://doi.org/10.1073/pnas.1507610113

Peng, P., Namkung, J., Barnes, M., & Sun, C. (2016). A meta-analysis of mathematics and working memory: Moderating effects of working memory domain, type of mathematics skill, and sample characteristics. Journal of Educational Psychology, 108(4), 455-473. https://doi.org/10.1037/edu0000079

Piaget, J. (1965). The Child’s conception of number. W.W. Norton.

Portell, M., & Vives, J. (2019). Investigación en Psicología y Logopedia: Introducción a los diseños experimentales, cuasi-experimentales y ex post facto. Servei de Publicacions de la Universitat Autònoma de Barcelona.

Porteus, S. D. (1965). Porteus Maze Tests: Fifty years' application. Pacific Books.

Purpura, D. J., Schmitt, S. A., & Ganley, C. M. (2017). Foundations of mathematics and literacy: The role of executive functioning components. Journal of Experimental Child Psychology, 153, 15-34. https://doi.org/10.1016/j.jecp.2016.08.010

Raghubar, K. P., & Barnes, M. A. (2017). Early numeracy skills in preschool-aged children: a review of neurocognitive findings and implications for assessment and intervention. The Clinical Neuropsychologist, 31(2), 329-351. https://doi.org/10.1080/13854046.2016.1259387

Ropovik, I. (2014). Do executive functions predict the ability to learn problem-solving principles? Intelligence, 44, 64-74. https://doi.org/10.1016/j.intell.2014.03.002

Rosas, R., Espinoza, V., Garolera, M., & San-Martín, P. (2017). Executive Functions at the start of kindergarten: are they good predictors of academic performance at the end of year one? A longitudinal study. Studies in Psychology, 38(2), 451-472. https://doi.org/10.1080/02109395.2017.1311458

Rubiales, J., Bakker, L., & Delgado Mejía, I. D. (2011). Organización y planificación en niños con TDAH: Evaluación y propuesta de un programa de estimulación. Cuadernos de Neuropsicología, 5(2), 145-161.

Salehinejad, M. A., Ghanavati, E., Rashid, M. H. A., & Nitsche, M. A. (2021). Hot and cold executive functions in the brain: A prefrontal-cingular network. Brain and Neuroscience Advances, 5, 1-19. https://doi.org/10.1177/23982128211007769

Segundo-Marcos, R., Carrillo, A.M., Fernández, V. L., & González, M. T. D. (2022). Development of executive functions in late childhood and the mediating role of cooperative learning: A longitudinal study. Cognitive Development, 63, 101219. https://doi.org/10.1016/j.cogdev.2022.101219

Stocco, A., Lebiere, C., & Anderson, J.R. (2010). Conditional routing of information to the cortex: a model of the basal Ganglia’s role in cognitive coordination. Psychological Review, 117, 541-574. https://doi.org/10.1037/a0019077

ten Braak, D., Lenes, R., Purpura, D. J., Schmitt, S.A., & Størksen, I. (2022). Why do early mathematics skills predict later mathematics and reading achievement? The role of executive function. Journal of Experimental Child Psychology, 214, 105306. https://doi.org/10.1016/j.jecp.2021.105306

Tirapu-Ustárroz, J., Bausela-Herreras, E., & Cordero-Andrés, P. (2018). Model of executive functions based on factorial analyses in child and school populations: a meta-analysis. Revista de Neurología, 67(6), 215-225. https://doi.org/10.33588/rn.6706.2017450

Titz, C., & Karbach, J. (2014). Working memory and executive functions: Effects of training on academic achievement. Psychological Research, 78(6), 852-868. https://doi.org/10.1007/s00426-013-0537-1

Turnbull, O. (2002). The executive brain: frontal lobes and the civilized mind. Neuropsychoanalysis, 4(2), 206-208. https://doi.org/10.1080/15294145.2002.10773402

Tzuriel, D., Hanuka-Levy, D., & Kashy- Rosenbaum, G. (2022). Dynamic assessment of self-regulation and planning behavior. Frontiers in Education, 7, 885170. https://doi.org/10.3389/feduc.2022.885170

Van de Rijt, B., Van Luit, J., & Pennings, A. (1999). The construction of the Utrecht Early Mathematical Competence Scales. Educational and Psychological Measurement, 59(2), 289-309. https://doi.org/10.1177/0013164499592006

Van der Ven, S. H. G., Kroesbergen, E. H., Boom, J., & Leseman, P. P. M. (2011). The development of executive functions and early mathematics: A dynamic relationship. British Journal of Educational Psychology, 82, 100-119. https://doi.org/10.1111/j.2044-8279.2011.02035.x

Viterbori, P., Usai, M.C., Traverso, L., & De Franchis, V. (2015). How preschool executive functioning predicts several aspects of math achievement in Grades 1 and 3: A longitudinal study. Journal of Experimental Child Psychology, 140, 38-55. http://dx.doi.org/10.1016/j.jecp.2015.06.014

Wang, X., Georgiou, G. K., Li, Q., & Tavouktsoglou, A. (2018). Do Chinese children with math difficulties have a deficit in executive functioning? Frontiers in Psychology, 9, 906. https://doi.org/10.3389/fpsyg.2018.00906

Wongupparaj, P., & Kadosh, R. C. (2022). Relating mathematical abilities to numerical skills and executive functions in informal and formal schooling. BMC Psychology, 10(1), 27-40. https://doi.org/10.1186/s40359-022-00740-9

Yang, X., Chung. K. K. H., & McBride, C. (2019). Longitudinal contributions of executive functioning and visual-spatial skills to mathematics learning in young Chinese children. Educational Psychology, 39(5), 678-704. https://doi.org/10.1080/01443410.2018.1546831

Zelazo, P. (2006). The Dimensional Change Card Sort (DCCS): a method of assessing executive function in children. Nature Protocols, 1, 297-301. https://doi.org/10.1038/nprot.2006.46

Zink, N., Lenartowicz, A., & Markett, S. (2021). A new era for executive function research: On the transition from centralized to distributed executive functioning. Neuroscience & Biobehavioral Reviews, 124, 235-244. https://doi.org/10.1016/j.neubiorev.2021.02.011

Published

2024-03-05

How to Cite

Bernal-Ruiz, F., Farías, T., Carreño, S., Segura, M., Donoso-Alvarez, F., & Rivera, R. (2024). Predictive ability of cognitive flexibility and planning in early mathematical competencies. Ciencias Psicológicas, 18(1), e-3277. https://doi.org/10.22235/cp.v18i1.3277

Issue

Section

ORIGINAL ARTICLES

Similar Articles

<< < > >> 

You may also start an advanced similarity search for this article.