DESARROLLO DE DESTREZAS ADAPTATIVAS: ¿UNA META FACTIBLE Y VALIOSA PARA LA EDUACIÓN (PRIMARIA) DE LAS MATEMATICAS?

Autores/as

  • Lieven Verschaffel Center for Instructional Psychology and Technology Katholieke Universiteit Leuven
  • Koen Luwel Center for Instructional Psychology and Technology Katholieke Universiteit Leuven
  • Joke Torbeyns Center for Instructional Psychology and Technology Katholieke Universiteit Leuven
  • Wim Van Dooren Center for Instructional Psychology and Technology Katholieke Universiteit Leuven

DOI:

https://doi.org/10.22235/cp.v0i1.571

Palabras clave:

Enseñanza Primaria, expertise adaptativo, aritmètica, estrategias matemàticas, enseñanza primaria, estrategias matemáticas.

Resumen

Hace algunos años, Hatano diferenció entre el nivel de experto de aprendizaje de rutina y el adaptativo e impulsó el desarrollo y la implementación de ambientes de aprendizaje que tengan como objetivo el tipo adaptativo de experiencia por sobre el de rutina. En esta contribución, nos enfocamos en un aspecto de la adaptabilidad, la llamada adaptativa del uso de estrategias de solución en aritmética de educación primaria. En la primera parte de este artículo, brindamos algunos enfoques conceptuales y metodológicos en los asuntos de adaptabilidad. Más específicamente, hacemos una revisión crítica de las definiciones y operacionalizaciones de estrategias de adaptabilidad que solo toman en cuenta tareas y características del sujeto. Argumentamos la necesidad de un concepto y un enfoque que también incluya el contexto sociocultural. La segunda parte, comprende algunas consideraciones educativas con respecto a las preguntas de porque, cuando, para quien o cómo se procura la búsqueda de nivel de experto adaptativa en la educación de las matemáticas para la escuela primaria.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Baroody, A.J., & Dowker, A. (2003) (Eds). The development of arithmetic concepts and skills. Constructing adaptive expertise. Mahwah, NJ: Lawrence Erlbaum Associates.

Bisanz, J. (2003). Arithmetical development. Commentary on chapters 1 through 8 and reflections on directions. In A.J. Baroody & A. Dowker (Eds), The development of arithmetic concepts and skills (pp. 435-452). Mahwah, NJ : Lawrence Erlbaum Associates.

Blöte, A.W., Van der Burg, E., & Klein, A. S. (2001). Students’ flexibility in solving two-digit addition and subtraction problems: Instruction effects. Journal of Educational Psychology, 93, 627-638.

Boaler, J. (2000). Exploring Situated Insights into Research and Learning. Journal for Research in Mathematics Education, 39, 113-119

Bransford, J. (2001). Thoughts on adaptive expertise. (Unpublished manuscript); Available at http://www.vanth.org/docs/AdaptiveExpertise.pdf

Cajori, F. (1917). A history of elementary mathematics. New York: Macmillan.

Carr, M., & Jessup, D.L. (1997). Gender differences in first-grade mathematics strategy use: Social and metacognitive influences. Journal of Educational Psychology, 89, 318-328.

Duncker, K. (1945). On problem solving. Psychological Monographs, 58 (5, Whole n° 270).

Ellis, S. (1997). Strategy choice in sociocultural context. Developmental Review, 17, 490-524.

Freudenthal, H. (1991). Revisiting mathematics education. Dordrecht: Reidel.

Geary, D.C. (2003). Arithmetical development: Commentary on Chapters 9 through 15 and future directions. In A.J. Baroody & A. Dowker (Eds), The development of arithmetic concepts and skills: Constructing adaptive expertise (pp. 453- 464). Mahwah, N.J.: Lawrence Erlbaum Associates.

Gravemeijer, K. (1994). Developing realistic mathematics education. Utrecht, The Netherlands: Freudenthal Institute, University of Utrecht.

Guilford, J.P. (1967). The nature of human intelligence. New York: McGraw-Hill.

Hatano, G. (1982). Cognitive consequences of practice in culture specific procedural skills. The Quartely Newsletter of the Laboratory of Comparative Human Cognition, 4, 15-18.

Hatano, G. (2003). Foreword. In A.J. Baroody & A. Dowker (Eds), The development of arithmetic concepts and skills (pp. xi-xiii). Mahwah, NJ: Lawrence Erlbaum Associates.

Hatano, G., & Oura, Y. (2003). Reconceptualizing school learning using insight from expertise research. Educational Researcher, 32(8), 26-29.

Heavey, L. (2003). Arithmetical savants. In A.J. Baroody & A. Dowker (Eds), The development of arithmetic concepts and skills (pp. 409-434). Mahwah, NJ : Lawrence Erlbaum Associates.

Heirdsfield, A. M., & Cooper, T. J. (2002). Flexibility and inflexibility in accurate mental addition and subtraction: Two case studies. The Journal of Mathematical Behavior, 21, 57-74.

Klein, A.S., Beishuizen, M., & Treffers, A. (1998). The empty number line in Dutch second grades: Realistic versus gradual program design. Journal for Research in Mathematics Education, 29, 443-464.

Krutetskii, V.A. (1976). The psychology of mathematical abilities in school children. Chicago: University of Chicago Press.

Luchins, A.S., & Luchins, E.H. (1959). Rigidity of behavior - A variational approach to the effect of einstellung. Eugene, OR: University of Oregon Books.

Luwel, K., Verschaffel, L., & Lemaire, P. (2005). Children’s strategies in numerosity judgment. Cognitive Development, 20, 448-471.

Milo, B., & Ruijssenaars, A.J.J.M. (2002). Strategiegebruik van leerlingen in het speciaal basisonderwijs: begeleiden of sturen? [Strategy instruction in special education: Guided of direct instruction?] Pedagogische Studiën, 79, 117-129.

Moser Opitz, E. (2001). Mathematical knowledge and progress in the mathematical learning of children with special needs in their first year of school. In MATHE 2000. Selected papers (pp. 85-88). Dortmund, Germany: University of Dortmund, Department of Mathematics.

National Council of Teachers of Mathematics. (1989). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. [http://standards.nctm.org/ document/index.htm]

Nunes, T., Schliemann, A., & Carraher, D. (1993). Street mathematics and school mathematics. Cambridge, UK: Cambridge University Press.

Selter, C. (1998). Building on children’s mathematics. A teaching experiment in grade three. Educational Studies in Mathematics, 36, 1-27.

Shrager, J., & Siegler, R.S. (1998). SCADS: A model of children’s strategy choices and strategy discoveries. Psychological Science, 9, 405-410.

Siegler, R.S. (1998). Children’s thinking. New Jersey: Prentice Hall.

Siegler, R.S., & Lemaire, P. (1997). Older and younger adults’ strategy choices in multiplication: Testing predictions of ASCM using the choice/no-choice method. Journal of Experimental Psychology: General, 126, 71-92.

Straker, A. (1999). The National Numeracy project: 1996-99. In I. Thompson (Ed.), Issues in teaching numeracy in primary schools (pp. 39-48). Buckingham; U.K.: Open University Press.

Torbeyns, J., Verschaffel, L., & Ghesquière, P. (2004). Strategy development in children with mathematical disabilities: Insights from the choice/no-choice method and the chronologicalage/ ability-level-match design. Journal of Learning Disabilities, 37, 119-131.

Treffers, A., De Moor, E., & Feijs, E. (1990). Proeve van een national programma voor het reken/ wiksundeonderwijs op de basisschool. Deel 1. Overzicht einddoelen. [Towards a national curriculum for mathematics education in the elementary school. part 1. Overview of the goals.] Tilburg, The Netherlands: Zwijsen.

Van den Heuvel-Panhuizen, M. (Ed.) (2001). Children learn mathematics. A learning-teaching trajectory with intermediate attainment targets for calculation with whole numbers in primary school. Groningen, The Netherlands: Wolters Noordhoff.

Van der Heijden, M.K. (1993). Consistentie van aanpakgedrag [Consistency in solution behavior.] Lisse, The Netherlands: Swets & Zeitlinger.

Warner, L.B., Davis, G.E., Alcock, L.J., & Coppolo, J. (2002). Flexible mathematical thinking and multiple representations in middle school mathematics. Mediterranean Journal for Research in Mathematics Education, 1(2), 37-61.

Wertheimer, M. (1945). Productive thinking. London: Tavistock.

Wittmann, E. Ch. (1995). Mathematics education as a design science. Educational Studies in Mathematics, 29, 355-374.

Wittmann, E.Ch., & Müller, G.N. (1990-1992). Handbuch produktiver rechenübungen.Vols 1 & 2 [Handbook of productive arithmetic exercises. Volume 1 & 2]. Düsseldorf und Stuttgart, Germany: Klett Verlag.

Descargas

Publicado

2007-05-30

Cómo citar

Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2007). DESARROLLO DE DESTREZAS ADAPTATIVAS: ¿UNA META FACTIBLE Y VALIOSA PARA LA EDUACIÓN (PRIMARIA) DE LAS MATEMATICAS?. Ciencias Psicológicas, 1(1), 27–35. https://doi.org/10.22235/cp.v0i1.571

Número

Sección

ARTÍCULOS ORIGINALES

Artículos similares

<< < 

También puede {advancedSearchLink} para este artículo.