Validation of a model of positive and negative personality traits as predictors of psychological well-being using machine learning algorithms

Authors

DOI:

https://doi.org/10.22235/cp.v18i1.3286

Keywords:

positive traits, negative traits, personality, psychological well-being, algorithms

Abstract

The objective of the study was to verify a predictive model of positive and negative personality traits taking psychological well-being as a criterion through the implementation of machine learning algorithms. 2038 adult subjects (51.9 % women) participated. For data collection were used: Big Five Inventory and Mental Health Continuum-Short Form. In addition, to assess the positive and negative personality traits, the already validated items of the positive (HFM) and negative trait models (BAM), were used jointly. Based on the findings found, it was possible to verify that the predictive efficacy of the tested model of positive and negative traits, derived from a lexical approach, was superior to the predictive capacity of normal personality traits for the prediction of well-being.

Downloads

Download data is not yet available.

Author Biographies

Alejandro Castro Solano, Universidad de Buenos Aires; Universidad de Palermo; Conicet

Doctor en Psicología. Investigador Principal del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina). Profesor Adjunto Regular de la Facultad de Psicología, Universidad de Buenos Aires. Director del Doctorado de la Universidad de Palermo. Dirección: Mario Bravo 1259 (C1175ABW), Buenos Aires, Argentina, Teléfono: +54 11 51994500 (int. 1311). e-mail:  alejandro.castrosolano@gmail.com. ORCID ID: https://orcid.org/0000-0002-4639-3706

Micaela Ailén Caporiccio Trillo , Universidad de Buenos Aires

Licenciada en Psicología, Facultad de Psicología, Universidad de Buenos Aires. Becaria Consejo Interuniversitario Nacional (CIN). Av. Independencia 3065, CABA, Argentina. e-mail: micatrillo5@gmail.com

Alejandro César Cosentino, Universidad de Buenos Aires; Universidad de Palermo

Doctor en Psicología. Profesor e Investigador, Universidad de Palermo y Universidad de Buenos Aires, Argentina. e-mail: acosentino@outlook.com.  ORCID ID: http://orcid.org/0000-0002-7786-5470

References

Allport, G. W. & Odbert, H. S. (1936). Trait-names: A psycholexical study. Psychological Monographs, 47(1), i-171. https://doi.org/10.1037/h0093360

Anglim, J., Horwood, S., Smillie, L. D., Marrero, R. J., & Wood, J. K. (2020). Predicting psychological and subjective well-being from personality: A meta-analysis. Psychological Bulletin, 146(4), 279-323. https://doi.org/10.1037/bul0000226

Blasco-Belled, A., Tejada-Gallardo, C., Alsinet, C., & Rogoza, R. (2024). The links of subjective and psychological well-being with the Dark Triad traits: A meta-analysis. Journal of Personality, 92, 584-600. https://doi.org/10.1111/jopy.12853

Bleidorn, W., & Hopwood, C. J. (2019). Using machine learning to advance personality assessment and theory. Personality and Social Psychology Review, 23(2), 190-203. https://doi.org/10.1177/1088868318772990

Castro Solano, A., & Casullo, M. M. (2001). Rasgos de personalidad, bienestar psicológico y rendimiento académico en adolescentes argentinos. Interdisciplinaria 18, 65–85.

Castro Solano, A., & Cosentino, A. (2017). High Five Model: Los factores altos están asociados con bajo riesgo de enfermedades médicas, mentales y de personalidad. Psicodebate. Psicología, Cultura y Sociedad, 17(2), 69-82. https://doi.org/10.18682/pd.v17i2.712

Castro Solano, A., & Cosentino, A. (2019). The High Five Model: Associations of the high factors with complete mental well-being and academic adjustment in university students. Europe’s Journal of Psychology, 15(4), 656–670. https://doi.org/10.5964/ejop.v15i4.1759

Cawley, M. J., Martin, J. E., & Johnson, J. A. (2000). A virtues approach to personality. Personality and Individual Differences, 28(5), 997-1013. https://doi.org/10.1016/s0191-8869(99)00207-x

Chow, S. L. (2002). Methods in psychological research. Encyclopedia of Life Support Systems.

Christopher, J. C., & Hickinbottom, S. (2008). Positive psychology, ethnocentrism, and the disguised ideology of individualism. Theory & Psychology, 18(5), 563-589. https://doi.org/10.1177/0959354308093396

Cosentino, A., & Castro Solano, A. (2017). The High Five: Associations of the five positive factors with the Big Five and well-being. Frontiers in Psychology, 8, e1250. https://doi.org/10.3389/fpsyg.2017.01250

Cosentino, A., & Castro Solano, A. (2023, en prensa). An Inductively derived Model of Negative Personality Traits. Testing, Psychometrics, Methodology in Applied Psychology.

Costa, P. T., & McCrae, R. R. (1984). The NEO Personality Inventory Manual. Psychological Assessment Resources. https://doi.org/10.1007/springerreference_184625

De la Iglesia, G. & Castro Solano A. (2020). Inventario de los Cinco Continuos de la Personalidad –ICCP-. Evaluación de Rasgos Positivos y Patológicos de la Personalidad. Paidós Informatizados.

De Raad, B., & Van Oudenhoven, J. P. (2011). A psycholexical Study of Virtues in the Dutch Language, and Relations between Virtues and Personality. European Journal of Personality, 25(1), 43-52. https://doi.org/10.1002/per.777

Delgadillo, J., & Gonzalez Salas Duhne, P. (2020). Targeted prescription of cognitive–behavioral therapy versus person-centered counseling for depression using a machine learning approach. Journal of Consulting and Clinical Psychology, 88(1), 14-24. https://doi.org/10.1037/ccp0000476

Dey, A. (2016). Machine Learning Algorithms: A review. International Journal of Computer Science and Information Technologies, 7(3), 1174-1179.

Dhall, D., Kaur, R., & Juneja, M. (2020). Machine Learning: A review of the algorithms and its applications. En P. Singh, A. Kar, Y. Singh, M. Kolekar, & S. Tanwar (Eds.), Proceedings of ICRIC 2019. Lecture Notes in Electrical Engineering (pp. 47-63). Springer. https://doi.org/10.1007/9 78-3-030-29407-6_5

Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine Learning approaches for clinical psychology and psychiatry. Annual Review of Clinical Psychology, 14, 91-118. https://doi.org/10.1146/annurev-clinpsy-032816-045037

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1-22. https://doi.org/10.18637/jss.v033.i01

Gareth, J., Daniela, W., Trevor, H., & Robert, T. (2013). An introduction to statistical learning: with applications in R. Spinger. https://doi.org/10.1111/j.1467-9868.2005.00503.x

Garge, N. R., Bobashev, G., & Eggleston, B. (2013). Random forest methodology for model-based recursive partitioning: the mobForest package for R. BMC bioinformatics, 14(1), 1-8. https://doi.org/10.1186/1471-2105-14-125

Gómez Penedo, J. M., Schwartz, B., Giesemann, J., Rubel, J. A., Deisenhofer, A. K., & Lutz, W. (2022). For whom should psychotherapy focus on problem coping? A machine learning algorithm for treatment personalization. Psychotherapy Research, 32(2), 151-164. https://doi.org/10.1080/10503307.2021.1930242

Jacobucci, R., & Grimm, K. J. (2020). Machine Learning and psychological research: the unexplored effect of measurement. Perspectives on Psychological Science: a Journal of the Association for Psychological Science, 15(3), 809-816. https://doi.org/10.1177/1745691620902467

John, O. P., Donahue, E. M., & Kentle, R. L. (1991). Big Five Inventory (BFI) [Database record]. APA PsycTests. https://doi.org/10.1037/t07550-000

Jones, D. N., & Paulhus, D. L. (2014). Introducing the short dark triad (SD3) a brief measure of dark personality traits. Assessment, 21(1), 28-41. https://doi.org/10.1177/1073191113514105

Kaufman S. B., Yaden D. B., Hyde, E., & Tsukayama, E. (2019). The light vs. dark triad of personality: contrasting two very different profiles of human nature. Frontiers in Psychology, 10, e467. https://doi.org/10.3389/fpsyg.2019.00467

Keyes, C. L. M. (2002). The mental health continuum: From languishing to flourishing in life. Journal of Health and Social Behavior, 43, 207-222. https://doi.org/10.2307/3090197

Keyes, C. L. M. (2005). The subjective well-being of America’s youth: toward a comprehensive assessment. Adolescent and Family Health, 4, 3-11.

Koul, A., Becchio, C., & Cavallo, A. (2018). PredPsych: A toolbox for predictive machine learning-based approach in experimental psychology research. Behavior research methods, 50(4), 1657-1672. https://doi.org/10.3758/s13428-017-0987-2

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18-22.

Lin, E., Lin, C. H., & Lane, H. Y. (2020). Precision psychiatry applications with pharmacogenomics: artificial intelligence and Machine Learning approaches. International Journal of Molecular Sciences, 21(3), 969. https://doi.org/10.3390/ijms21030969

Liu, Y., Zhao, N., & Ma, M. (2021). The Dark Triad Traits and the Prediction of Eudaimonic Wellbeing. Frontiers in Psychology, 12, 693778. https://doi.org/10.3389/fpsyg.2021.693778

Lopez, S. J., Prosser, E. C., Edwards, L. M., Magyar-Moe, J. L., Neufeld, J. E., & Rasmussen, H. N. (2002). Putting positive psychology in a multicultural context. En C. R. Snyder & S. J. Lopez (Eds.), Handbook of positive psychology (pp. 700–714). Oxford University Press.

Lupano Perugini M. L., de la Iglesia, G., Castro Solano A., & Keyes, C. L. M. (2017). The Mental Health Continuum-Short Form (MHC-SF) in the Argentinean context: confirmatory factor analysis and measurement invariance. Europe Journal of Psychology, 13, 93-108. https://doi.org/10.5964/ejop.v13i1.1163

McCullough, M. E., & Snyder, C. R. (2000). Classical source of human strength: revisiting an old home and building a new one. Journal of Social and Clinical Psychology, 19, 1-10. https://doi.org/10.1521/jscp.2000.19.1.1

Morales-Vives, F., De Raad, B., & Vigil-Colet, A. (2014). Psycho-lexically based virtue factors in Spain and their relation with personality traits. The Journal of General Psychology, 141(4), 297-325. https://doi.org/10.1080/00221309.2014.938719

Nave, G., Minxha, J., Greenberg, D. M., Kosinski, M., Stillwell, D., & Rentfrow, J. (2018). Musical preferences predict personality: evidence from active listening and Facebook likes. Psychological Science, 29(7), 1145-1158. https://doi.org/10.1177/0956797618761659

Orrù, G., Monaro, M., Conversano, C., Gemignani, A., & Sartori, G. (2020). Machine Learning in psychometrics and psychological research. Frontiers in Psychology, 10, 2970. https://doi.org/10.3389/fpsyg.2019.02970

Park, G., Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J., & Seligman, M. E. (2015). Automatic personality assessment through social media language. Journal of Personality and Social Psychology, 108(6), 934. https://doi.org/10.1037/pspp0000020

Park, N., Peterson, C. & Seligman, M. E. P. (2004). Strengths of character and well-being. Journal of Social and Clinical Psychology, 23(5), 603-619. https://doi.org/10.1521/jscp.23.5.603.50748

Paulhus, D. L., & Williams, K. M. (2002). The dark triad of personality: narcissism, machiavellianism, and psychopathy. Journal of Research in Personality, 36, 556-563. https://doi.org/10.1016/S0092-6566(02)00505-6

Peterson, C. & Seligman, M. E. P. (2004). Character strengths and virtues: A handbook and classification. Oxford University Press.

Ryff, C. (1989). Happiness is everything, or is it? Explorations on the meaning of psychological well-being. Journal of Personality and Social Psychology, 57, 1069-1081. https://doi.org/10.1037/0022-3514.57.6.1069

Shatte, A., Hutchinson, D. M., & Teague, S. J. (2019). Machine learning in mental health: A scoping review of methods and applications. Psychological Medicine, 49(9), 1426-1448. https://doi.org/10.1017/S0033291719000151

Snyder, C. R., Lopez, S. J., & Pedrotti, J. T. (2011). Positive Psychology: The Scientific and Practical Explorations of Human Strengths (2a ed.). Sage.

Stavraki, M., Artacho-Mata, E., Bajo, M., Diaz, D. (2023). The dark and light of human nature: Spanish adaptation of the light triad scale and its relationship with psychological well-being. Current Psychology, 42, 26979-26988 https://doi.org/10.1007/s12144-022-03732-5

Tkach, C., & Lyubomirsky, S. (2006). How do people pursue happiness? Relating personality, happiness-increasing strategies, and well-being. Journal of Happiness Studies, 7(2), 183-225. https://doi.org/10.1007/s10902-005-4754-1

Walker, L. J., & Pitts, R. C. (1998). Naturalistic conceptions of moral maturity. Developmental Psychology, 34(3), 403-419. https://doi.org/10.1037/0012-1649.34.3.403

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100-1122. https://doi.org/10.1177/1745691617693393

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (statistical methodology), 67(2), 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x

Published

2024-05-17

How to Cite

Castro Solano, A., Lupano Perugini, M. L., Caporiccio Trillo , M. A., & Cosentino, A. C. (2024). Validation of a model of positive and negative personality traits as predictors of psychological well-being using machine learning algorithms. Ciencias Psicológicas, 18(1), e-3286. https://doi.org/10.22235/cp.v18i1.3286

Issue

Section

ORIGINAL ARTICLES

Similar Articles

<< < 

You may also start an advanced similarity search for this article.