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Abstract: Some years ago, Hatano differentiated between routine and adaptive expertise
and made a strong plea for the development and implementation of learning environments
that aim at the latter type of expertise and not just the former. In this contribution we reflect on
one aspect of adaptivity, namely the adaptive use of solution strategies in elementary school
arithmetic. In the first part of this article we give some conceptual and methodological reflections
on the adaptivity issue. More specifically, we critically review definitions and operationalisations
of strategy adaptivity that only take into account task and subject characteristics and we argue
for a concept and an approach that also involve the sociocultural context. The second part
comprises some educational considerations with respect to the questions why, when, for whom,
and how to strive for adaptive expertise in elementary mathematics education
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Resumen: Hace algunos años, Hatano diferenció entre el nivel de experto de aprendizaje
de rutina y el adaptativo e impulsó el desarrollo y la implementación de ambientes de
aprendizaje que tengan como objetivo el tipo adaptativo de experiencia por sobre el de rutina.
En esta contribución, nos enfocamos en un aspecto de la adaptabilidad, la llamada adaptativa
del uso de estrategias de solución en aritmética de educación primaria. En la primera parte de
este artículo, brindamos algunos enfoques conceptuales y metodológicos en los asuntos de
adaptabilidad. Más específicamente, hacemos una revisión crítica de las definiciones y
operacionalizaciones de estrategias de adaptabilidad que solo toman en cuenta tareas y
características del sujeto. Argumentamos la necesidad de un concepto y un enfoque que
también incluya el contexto sociocultural. La segunda parte, comprende algunas
consideraciones educativas con respecto a las preguntas de porque, cuando, para quien o
cómo se procura la búsqueda de nivel de experto adaptativa en la educación de las matemáticas
para la escuela primaria.

Palabras Clave: enseñanza primaria; expertise adaptativo; aritmètica; estrategias
matemáticas.
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INTRODUCTION

In the beginning of 2006 the international
research community of developmental and
educational psychologists lost one of its greatest
scholars, Giyoo Hatano. In his foreword to the
book The development of arithmetic concepts
and skills. Constructing adaptive expertise edited
by Baroody and Dowker (2003), the late Hatano
(2003, p. xi) argues that one of the most
important issues is how students can be taught
curricular subjects so that they develop adaptive
expertise. He describes adaptive expertise as
“the ability to apply meaningfully learned
procedures flexibly and creatively” and opposes
it to routine expertise, i.e. “simply being able to
complete school mathematics exercises quickly
and accurately without (much) understanding”.

Although the constructs of adaptive and
routine expertise were introduced by Hatano
already more than two decades ago (Hatano,
1982) and although terms like adaptivity and
flexibility – which we will treat as synonyms in
this article - have been used with increasing
frequency by researchers and practitioners in
the field of mathematics education for a long
time, few attempts have been made to
rigorously and systematically study (a) adaptive
expertise as a competence, (b) the acquisition
of adaptive expertise, and (c) its cultivation, and
(d) its assessment, in the academic domain of
(elementary) mathematics.

Of course, the older and recent histories of
the research fields of (cognitive) psychology and
(mathematics) education comprise numerous
valuable building blocks for such an endeavor.
For instance, there is the classical work of
Gestalt psychologists like Duncker (1945) on
‘functional fixedness’ and Luchins and Luchins
(1959) on ‘problem-solving sets’, which provides
strong evidence for the rigidifying effects of long-
term stereotyped practice, as well as
Wertheimer ’s (1945) richly documented
contrastive analysis between blind following of
procedures and detection and exploitation of
(mathematical) structure. Flexibility played also
a central role in Krutetskii’s (1976) famous study
of mathematical ability and in several other
analyses of individual differences in ability and
creativity in general (see e.g., Guilford, 1967).
Furthermore, we refer to studies of the thinking
processes of eminent mathematicians (see e.g.
Cajori, 1917; Wertheimer, 1945) or skilled
calculating prodigies (see Heavey, 2003)

demonstrating remarkable flexibility in their
thinking. Finally, mathematics educators like
Freudenthal (1983) and Treffers, De Moor and
Feijs (1990) in the Netherlands and Wittmann
and Müller (1990-1992) in Germany have already
for a long time emphasized the educational
importance of recognizing and stimulating the
variety and flexibility in children’s self-constructed
strategies as a major pillar of their innovative
approaches of (elementary) mathematics
education.

The rise of cognitive psychology during the
last decades of the previous century has
contributed to a more fine-grained understanding
of the cognitive processes and mechanisms
underlying flexibility. Siegler’s series of computer
simulation models of how children choose
adaptively among strategies for particular tasks
in elementary arithmetic probably constitutes the
most ambitious and explicit theoretical account
(from the cognitive-psychological perspective)
of procedural flexibility in (elementary) arithmetic
(Shrager & Siegler, 1998).

While there is little doubt that cognitive
psychology has significantly improved our
understanding of flexibility and its role in
mathematical expertise, recent developments
within our research field have revealed that the
quintessence of flexibility cannot be grasped in
(purely) cognitive terms alone. In their discussion
paper at the end of a special issue of the
Educational Researcher on ‘Expertise’, Hatano
and Oura (2003) emphasize that the process of
gaining adaptive expertise always occurs in
particular sociocultural contexts and is
accompanied by changes in interest, values and
identity (besides changes in the cognitive realm).
This emphasis is echoed in Boaler’s (2000, p.
118) plea for a greater consideration of the
‘macro context’ in which (math) educational
research is conducted, and for “extending our
focus beyond the concepts and procedures that
pupils learn to the practices in which they engage
as they are learning them and the mediation of
cognitive forms by the environments in which
they are produced”.

In the first part of this article we will give some
further conceptual and methodological reflections
on the adaptivity issue, while in the second part
of it, we will give some educational considerations.
But before starting, we would like to emphasize
that the opposition between routine and adaptive
expertise does, of course, not apply only to the
use of mathematical procedures or strategies -
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which will be the focus of this article -, but to other
aspects of mathematical expertise. For instance,
it can also be applied to mathematical models (=
modeling flexibility) and representational forms
(= representational flexibility).

SOME CONCEPTUAL AND

METHODOLOGICAL CONSIDERATIONS

Sometimes procedural flexibility or adaptivity
is simply identified with using a variety of
solution strategies. For instance, at the
beginning of their ascertaining study of the role
of flexibility in accurate mental addition and
subtraction in the number domain up to 100,
Heirdsfield and Cooper (2002, p. 59) raise the
following question: “Why some students are
more accurate and flexible (= using a variety of
strategies) than others?” Further on, they
distinguish between pupils who are ‘accurate
and flexible’ and others who are ‘accurate and
inflexible’ merely on the basis of the question
whether they did or did not solve all items from
a given problem set by means of the same
procedure. Although possessing a variety of
strategies can be considered a ‘conditio sine
qua non’ for procedural flexibility or adaptivity,
merely showing that a group of children or even
an individual child applies a greater variety of
solution strategies on a series of tasks than
another group of children or another individual
child can hardly be considered as a (strong)
proof of it. So, while variety in one’s strategy
repertoire is an important parameter of strategic
competence, it is a different one than, and only
a precondition for, adaptivity. Indeed, most
people will agree that one can use a variety of
procedures without acting adaptively, but also
that using consistently one single strategy for
a whole series of arithmetic tasks might
sometimes be more adaptive than switching
between a diversity of strategies available in
one’s repertoire.

More frequently, procedural flexibility has
been defined in relation to certain task
characteristics. For instance, Van der Heijden
(1993, p. 80) defines it as follows: “Flexibility in
strategy use involves the flexible adaptation of

one’s solution procedures to task
characteristics”. He operationalized flexibility by
analyzing whether children systematically use
the 1010-procedure and the G10-procedure for,
respectively, additions and subtractions in the
number domain up to 1002 . Starting from exactly
the same definition, Blöte, Van den Burg and
Klein (2001, p. 628) operationalize flexibility of
strategy use in addition and subtraction with
numbers up to 100 as follows: “A student is
considered a flexible problem solver if he or she
chooses the solution procedures in relation to
the number characteristics of the problem, for
example, N10C for 62-29 and A10 for 62-243 ”.
In other words, these authors first distinguish
different procedures for doing additions and
subtractions up to 100, and, based on an
analysis of the strengths and weaknesses of
these different strategies vis-à-vis certain types
of problems, they define certain ‘problem type x
strategy type combinations’ as flexible and others
as inflexible. Although this operationalization of
adaptivity can already be considered as more
sophisticated than the one wherein adaptivity is
simply identified with strategy variety, it remains
highly problematic to evaluate procedural
flexibility in terms of task characteristics alone.
Indeed, it is possible that, for a particular subject
and/or under particular circumstances, the
strategy choice process that Van der Heijden
(1993) and Blöte et al. (2001) call ‘flexible’ may
become ‘inflexible’, and vice versa. Hereafter,
we consider two other kinds of factors that need
to be incorporated in a comprehensive concept
of adaptivity, besides task variables, namely
subject and context variables.

A first set of complicating factors, which has
been intensively and systematically investigated
and modeled by cognitive psychologists like
Siegler (1998, see also Shrager & Siegler, 1998),
are the subject variables. According to SCADS
(Strategy Choice and Discovery Simulation),
Siegler’s latest computer model of how children’s
mastery of simple arithmetic sums develops,
whether a particular strategy (e.g. retrieval or a
particular counting strategy) is chosen to solve
a particular item by a particular child depends
on how accurate and how quick that strategy is

2 The 1010 procedure involves splitting off the tens and the units in both integers and handling them separately (e.g.,
47+15=.; 40+10=50; 7+5=12; 50+12=62). The application of the G10 procedure, on the other hand, requires the child to
add or subtract the tens and the units of the second integer to resp. from the first unsplit integer (e.g., 47+15=.; 47+10=57;
57+5=62).
3 Using N10C for 62-29 means that the student does “62-30= 32, then 32+1=33, while a A10 strategy for 62-24 involves
the following steps: “62-2=60, 60-20=40, 40-2=38”.

Developing adaptive expertise
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for that particular item and for that particular child,
in comparison to other concurrent strategies
available in that child’s repertoire. So, Siegler’s
computer simulation model always tends to
select and apply the strategy that produces the
most beneficial combination of speed and
accuracy for a particular sum. Undoubtedly, the
adaptivity concept underlying this computer
model reflects a more complex and more subtle
view on the strategy choice process, wherein
affordances inherent in the task have to be seen
in relation to, and balanced with, subject
characteristics of the individual who is solving
the task.

Of course, conceptualizations of strategy
choice that comprise both task and subject
variables ask for capturing this assumed
complexity of the strategy choice process in the
research methodology. A method that is being
increasingly used for this purpose is the choice/
no-choice method (Siegler & Lemaire, 1997). The
choice/no-choice method requires testing each
subject under two types of conditions. In the
choice condition, subjects can freely choose
which strategy they use to solve each problem.
In the no-choice condition, subjects must use one
particular strategy to solve all problems. The
number of no-choice conditions equals the
number of strategies available in the choice
condition. The obligatory use of one particular
strategy on all problems in the no-choice condition
by each participant allows the researcher to obtain
unbiased estimates of the speed and accuracy
of the strategy. Comparison of the data about the
accuracy and the speed of the different strategies
as gathered in the no-choice conditions, with the
strategy choices made in the choice condition,
allows the researcher to assess the adaptiveness
of individual strategy choices in the choice
condition in a scientifically appropriate way: Does
the subject (in the choice condition) solve each
problem by means of the strategy that yields the
best performance – in terms of accuracy and
speed - on this problem, as evidenced by the
information obtained in the no-choice conditions?
Over the past few years our team has also
realized several studies wherein this method has
been successfully used to investigate the
adaptivity of elementary children’s strategy
choices in domains like elementary addition and
subtraction and numerosity estimation (Torbeyns,
Verschaffel & Ghesquière, 2004; Luwel,
Verschaffel & Lemaire, 2005). For instance, in one
our research programs, we investigate people’s

strategy choices for judging numerosities of
coloured blocks presented in rectangular grids
(e.g. in a 10 x 10 grid). Basically, we claim that
there are two main strategies to solve this task:
an addition strategy (wherein the total number of
blocks in the grid is divided into subgroups and
the number of blocks in each subgroup is added
to a running total), which seems effective for small
numerosities, and a subtraction strategy (in which
the (estimated) number of empty squares is
subtracted from the total number of squares in
the grid, e.g., in the above example, from 100),
which is effective for larger numerosities.
Moreover, we assume that each strategy has a
specific course of response times as a function
of the numerosity of blocks in the grid (from 1
until 100, in the case of a 10 x 10 grid). Using the
choice/no-choice method, we were able to show
that as students get older and more experienced,
they become more adaptive in their choice for
an addition or a subtraction strategy, in the sense
that, with growing age, we observed a decrease
in the distance between a) the numerosity at
which they stop using addition and start using
subtraction in the choice condition and b) the
numerosity at which, according to the reaction
time and accuracy data in the two no-choice
conditions, it would be most efficient to exchange
the addition for the subtraction strategy (see
Figure 1).  So, this distance between these two
change points in the reaction time data patterns,
which we considered as a nice measure of
individuals’ strategy adaptiveness, became
considerably smaller as the students grew older
(Luwel et al., 2005).

As already stated in the introductory section
of this article, recent theoretical developments,
and especially the rise of socio-cultural views,
have revealed that the issue of adaptivity is even
more complicated than suggested by cognitive
computer models like the one by Siegler c.s.
Applied to his SCADS model, the question is
whether there is not a set of situational or
contextual variables that also bear influence on
the strategy choice process (but that do not lend
themselves easily to experimental manipulation
or control), like students’ needs to make sense
of the task, their attempts to meet the (implicit)
expectations of the teacher or the researcher,
and the broader sociocultural or instructional
context wherein the child has to select and
execute an arithmetic strategy (Ellis, 1997).

A first nice example is the well-known study
by Nunes, Carraher and Schliemann (1993),
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showing that whether the problem is presented
as a real-world problem in an out-of-school
context or as an arithmetic task in a school
context (co-)determines the kind of arithmetic
strategy - oral versus written arithmetic – children
select and use to solve the problem.

As a second example, we refer to a study by
Carr and Jessup’s (1997), who found gender-
related differences in the arithmetic strategies
used by first-grade children (e.g. they found that
boys started earlier to exchange counting for
retrieval strategies than girls) that were
significantly associated with differences in the
nature and the importance of the girls’ and boys’
beliefs about what type of strategies would be
valued most (as indications of ability) by their
teacher and their parents.

So, people’s strategy choices in elementary
arithmetic are not only determined by task and
subject variables, but also by characteristics of
the environment wherein they have to
demonstrate their arithmetic skills, including what
representational and computational tools are
available and allowed and/or what aspects of
their strategic behavior  – speed, correctness,
certitude, simplicity, efficiency, elegance,
formality or generality of the solution strategy –
seem (most) valued in the classroom and/or
testing context (Ellis, 1997).

The methodological implication of this
theoretical complication is that research should
also try to take these complicating contextual

factors also into account when investigating (the
development of) procedural flexibility. Possible
methodological steps into that direction are:

• use of individual interviews to get deeper
insight into subjects’ perception and
interpretation of the context wherein they
have to make strategy choices and how
this influences their strategy choices;

• systematic manipulation of the
‘experimental contract’ (e.g., by explicitly
or implicitly rewarding particular aspects
of one’s strategic behavior, like the
correctness, speed, cleverness,
originality, etc. of the solution process);

• application of video-based observations
of how children (learn to) make strategy
choices in real classroom settings, – if
possible, complemented with (video-
based stimulated) interviews afterwards.

This recommendation to pay more attention
to contextual c.q. instructional variables is
echoed in Bisanz’ (2003, p. 447) commentary
at the end of Baroody and Dowker’s (2003a)
book, wherein he makes a strong plea for
integrating the analysis of instructional materials
and of teacher behavior into the study of
acquisition of (adaptive) expertise in elementary
arithmetic. Referring to one of the chapters in
the book, Bisanz writes: “Seo and Ginsburg
demonstrate the richness of insight that can arise
when researchers analyze not only the
responses or interpretations of children but also

Figure 1. Schematic presentation of the adaptivity measure used by Luwel et al. (2005), i.e. the distance
between the actual change point in the choice condition and the ideal change point inferred from the integration
of the data from the addition and subtraction   no-choice conditions, as indicated by the length of the arrow
below the horizontal axis  (from: Luwel et al., 2005).

Developing adaptive expertise
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the environments in which those children
develop. In this case the analysis of textbooks
and teacher behavior were essential to gaining
insights that otherwise would have been
regarded only as speculative. We would like to
see more of this sort of sensitivity and
thoroughness in the mainstream of
developmental research”. While fully endorsing
Bisanz’ plea, we would like to take it even a step
further and add that research on procedural
flexibility should not only investigate these
instructional environments in which this flexibility
develops by means of ‘ecologically valid’
ascertaining studies, but also, and may-be even
primarily, through design experiments, wherein
researchers work at “the construction of ‘artificial
objects’, namely teaching units, sets of coherent
teaching units and curricula as well as the
investigation of their possible effects in different
educational ‘ecologies’”, as has been argued so
eloquently and convincingly argued by Wittmann
(1995, p. 363) in his seminal article Mathematics
education as a design science.

Before closing the first part of this article,
wherein we have worked towards the following
definition of what it means to be adaptive in one’s
strategy choices: “By adaptive or flexible use of
mathematical strategies we mean the use of the
most appropriate solution strategy on a given
mathematical task, for a given individual, in a
given context or situation”, we would like to give
two short comments on this definition. Fist, as
emphasized earlier, by ‘the most appropriate
strategy’ we certainly do not simply mean ‘the
quickest strategy that leads to the correct
answer’ (as in the narrow cognitive-psychological
sense of the word). Second, the above definition
of flexibility does not involve any reference to
the level of deliberateness and consciousness
of the strategy choice being made. Many
researchers believe that conscious awareness
and deliberate control regulate strategy selection
and, thus, procedural flexibility. But there is also
evidence suggesting that, especially in quick and
simple strategy selections like the ones
addressed by SCADS, children’s selection of a
particular strategy does not result from deliberate
consideration of the choices and from conscious
awareness of the factors that influenced that
choice, but rather from more autonomous,
implicit processes. Evidently, the claim that the
strategy selection process itself can be(come)
automatized to such an extent that it escapes
from the solver’s conscious awareness and

deliberate control, has important methodological
– but also: educational - implications. This brings
us to the second part of our presentation,
wherein we will raise some educational
considerations about the issue of procedural
flexibility.

EDUCATIONAL CONSIDERATIONS

Underlying many current curriculum reform
documents, such as the Curriculum and evaluation
standards for school mathematics of the National
Council of Teachers of Mathematics in the US
(1989, 2000), the Numeracy Strategy in the UK
(Straker, 1999), the Proeve van een Nationaal
Programma voor het Reken/wiskundeonderwijs in
The Netherlands (Treffers et al., 1990), or the
Handbuch Produktiver Rechenübungen
(Wittmann & Müller, 1990) in Germany, and many
innovative curricula, textbooks and other
instructional materials more or less explicitly based
on these reform documents, there is a basic belief
in the feasibility and value of the strive for
procedural flexibility. However, this basic belief, as
well as some accompanying presuppositions about
what kind of adaptive expertise we should strive
for, and when and for whom and how to strive for
it, have not yet been subjected to much systematic
and scrutinized theoretical reflection and/or
empirical research.

 First, there is the issue of the optimal
moment for beginning to strive for adaptive
expertise. Several authors argue that one better
teaches, first and above all, for routine expertise,
and only afterwards, changes one’s aims and
pedagogy in the direction of adaptive expertise
(see e.g. Geary, 2003; Milo & Ruijssenaars,
2002; Warner, Davis, Alcock, & Coppolo, 2002).
This viewpoint is opposite to the view of most
advocates of reform-based approaches to
mathematics education, who conjecture that the
development of adaptive expertise is not
something that simply happens after people
develop routine expertise and that education for
adaptive expertise should be already present
from the very beginning of the teaching/learning
process (see e.g., Baroody, 2003; Gravemeijer,
1994; Selter, 1998; Wittmann & Müller, 1992), –
– an idea that is nicely expressed in the following
quote from Bransford (2001, p. 3): “You don’t
develop it in a ‘capstone course’ at the end of
students’ senior year. Instead the path toward
adaptive expertise is probably different from the
path toward routine expertise. Adapative
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expertise involves habits of mind, attitudes, and
ways of thinking and organizing one’s knowledge
that are different from routine expertise and that
take time to develop. We don’t mean to imply
that ‘you can’t teach an old routine expert new
tricks’. But it’s probably harder to do this than to
start people down an ‘adaptive expertise’ path
to begin with–at least for most people.” There is
a great need of comparative research involving
distinct instructional approaches that differ with
respect to the moment at which strategic
adaptivity is aimed at and that involve
comparisons of learning, retention, and transfer
effects on a broad scale of cognitive as well as
non-cognitive variables.

Closely related to this first issue is the
question whether promoting variable and flexible
strategy use is feasible and valuable across all
levels of mathematical achievement, including
the weaker ones. Many advocates of the reform
movement believe this is the case (Baroody,
2003; Moser Opitz, 2001; Van den Heuvel-
Panhuizen, 2001). Whereas some studies (e.g.,
Klein, Beishuizen & Treffers, 1998) indicate that
mathematically weak children can also profit
from instruction aiming at the flexible application
of variable strategies, other investigations (e.g.,
Milo & Ruijssenaars, 2002) question the efficacy
of this type of instruction for these children and
seem to suggest that instruction aimed at
procedural variety and flexibility will lead to a
degradation in strategy efficiency, and, hence,
in overall performance. While there are some
indications that warrant optimism (see e.g.,
Baroody, 2003; Moser Opitz, 2001; Van den
Heuvel-Panhuizen, 2001), more focused
research is needed to determine whether it is
indeed possible to design and implement
instructional approaches aiming at (procedural)
flexibility that are successful for all children,
including  the mathematically weaker ones.

This brings us to the third and last question,
namely how to design and implement effective
instruction aimed at adaptive expertise in
(elementary) mathematics education. Assuming
that children will profit from an approach wherein
they are, from an early stage in their learning
process on, confronted with a variety of methods
rather than being provided with and trained in a
single, uniform solution method, some reform-
based curriculum developers and textbook
authors provide children, in a non-evaluative way,
an overview of several alternative solution
methods for doing mental arithmetic (e.g., in the

number domain 1-20, 20-100, or 100-1000) and
stimulate them to select their own preferential
strategy or strategies, and to talk about and
reflect upon their selections. These curriculum
developers or textbook authors do not try to
establish fixed links between particular mental
calculation strategies and particular problem
types, nor try to develop in an explicit and
systematic way some kind of overall strategy for
selecting the most appropriate solution strategy
for every problem type. Other curriculum
developers and textbook authors take quite a
different strategy and provide explicit and
systematic teaching of different strategies for
doing mental arithmetic in the above-mentioned
number domains and teach children, afterwards,
explicitly and systematically how to use each
strategy ‘adaptively’. More particularly, during
several lessons children not only learn to identify,
name and apply the different mental calculation
strategies; they also learn to link each strategy
to a particular type of sums which that strategy
is considered (by the curriculum developers or
the textbook authors) most efficient. Contrary to
the first approach, all children are now provided
by with the same method for identifying particular
types of arithmetic problems and for applying
the most efficient solution strategy for each
problem type.

Based on the theoretical considerations
provided in the first part of this article, it seems
clear that providing children with a ‘(quasi-
)algorithmic’ rule for linking problem types to
solution strategies and with systematic training
in the use of that rule, as in the second example,
is not the kind of instruction that will yield adaptive
expertise as we have conceived and defined it.
Such instruction, based on a notion of adaptive
expertise that merely involves adaptivity to task
variables without any consideration of individual
or contextual factors, misjudges the
quintessence of adaptive expertise, which must
involve a personal and insightful choice based
on weighing different kinds of affordances, – not
only task-, but also subject- and context-related.

The more one dismisses a notion of
procedural flexibility that merely looks at task
characteristics, the more one will agree that there
is no easy shortcut to learning to become
adaptive, and that adaptive expertise is not
something that can be trained or taught, but
something that has to be promoted or cultivated.
The use of these latter terms emphasizes, first,
that the acquisition of adaptive expertise takes

Developing adaptive expertise
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place in the sociocultural context of the
classroom, second, that is as well a motivational
and emotional matter as a cognitive one.

Hatano and Oura (2003) proposed the
following inspiring set of motivational and
affective conditions for placing students on a
trajectory towards adaptive expertise (conceived
in line with its broad definition given at the end
of Section 2): (a) encountering novel problems
continuously, (b) engaging in interactive
dialogue, (c) being freed from urgent external
need to perform, (d) being surrounded by a group
that values understanding. We believe that these
conditions - which were developed for other
domains than mathematics and for learners of
ages well beyond the elementary school level -
are also critical for cultivating adaptive expertise
in (elementary) mathematics education. But, this
is only a belief, which needs to be subjected to
rigorous empirical research.

So, if we want to make progress in our
theoretical understanding and practical
enhancement of procedural flexibility in
elementary arithmetic, there is a great need of
empirical studies – and especially of design
experiments – that possess the following
characteristics. First, these studies should be
done in ‘ecologically valid’ settings, which means
that they are done in regular classes with regular
teachers, pupils and involve analyses of textbooks
and teacher behavior over longer periods of time.
Second, serious attention should be paid at the
optimal moment to start with this strive for
procedural flexibility and at the potentially
differential impact on children of different
(mathematical) abilities. Third, a good balance
between the social and the individual perspective
– or stated differently: between the socio-
mathematical norms about what it means to be
flexible, on the one hand, and the development
of individual children’s strategic flexibility, on the
other hand – is required. Fourth, given that
procedural flexibility in elementary arithmetic is –
from a mathematics education perspective – not
a goal in itself but mainly a vehicle for reaching
more general and far-reaching goals - the
assessment of children’s development in these
studies should not be restricted to procedural
flexibility and competence ‘an sich’, but should
also comprise their understanding of ‘big ideas’
and principles underlying the different strategies
as well as their emotions, beliefs and attitudes
towards flexibility and mathematics in general.
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