10.22235/cp.v18i1.3109
Variables sociodemográficas y percepción de prejuicios de las personas con discapacidad
Sociodemographic variables and prejudices perception from disabled people
Variáveis sociodemográficas e percepção de preconceito de pessoas com deficiência
Miguel Angel Sainz Palafox1 ORCID 0000-0002-1240-6740
José Ángel Vera Noriega2 ORCID 0000-0003-2764-4431
Martha Olivia Peña Ramos3 ORCID 0000-0002-5781-8781
Jesús Tánori Quintana4 ORCID 0000-0002-6485-2267
1 Centro de Investigación en Alimentación y Desarrollo A.C., México
2 Centro de Investigación en Alimentación y Desarrollo A.C., México, avera@ciad.mx
3 Centro de Investigación en Alimentación y Desarrollo A.C., México
4 Instituto Tecnológico de Sonora, México
Resumen:
Entre las barreras sociales que enfrentan las personas con discapacidad se encuentran los prejuicios, definidos como actitudes de aversión y hostilidad por la pertenencia a un grupo al que se le adjudican características indeseables. La percepción de prejuicios puede estar determinada por factores vinculados a variables sociodemográficas; sin embargo, pocos estudios se han enfocado en diferenciar las experiencias de las personas con discapacidad, en especial en el contexto mexicano. Se examinaron las opiniones de 5145 personas con discapacidad, a través de la Encuesta Nacional de Discriminación 2017, comparando la percepción de prejuicios de las personas con discapacidad a través de la edad, el género, el nivel socioeconómico, el tamaño de la localidad y el índice de desarrollo humano (IDH). El análisis factorial confirmatorio arroja una estructura con dos factores: prejuicios endogrupales y exogrupales. Los resultados indican que los adultos mayores, las personas que pertenecen a estratos sociodemográficos bajos y quienes habitan en localidades con un IDH bajo enfrentan mayores prejuicios en la escala total y en prejuicios endogrupales. Se discute el impacto del envejecimiento y la disponibilidad de recursos sociales en la percepción de prejuicios de las personas con discapacidad.
Palabras clave: discapacidad; prejuicios; discriminación; actitudes; estigma
Abstract:
People with disabilities face numerous social barriers, including prejudices, defined as hostile and aversive attitudes towards members of a stigmatized group. The prejudice's perception among people with disabilities may be a function of sociodemographic variables, however, only a few studies have deepened such differences in the experience of people with disabilities, especially in the Mexican context. The present study examines the opinions of 5145 people with disabilities through the Encuesta Nacional de Discriminación (ENADIS) 2017 (National Survey about Discrimination) by age, sex, socioeconomic level, location size and the Human Development Index (HDI). The confirmatory factor analysis shows two factors: in-group and out-group prejudices. Results in the comparisons reveal that the elderly, people with low sociodemographic status, and those living in locations with low HDI face higher means of prejudice on the total and in-group scales. The impact of aging and the availability of social services on the perception of prejudice by people with disabilities is discussed.
Keywords: disability; prejudice; discrimination; attitudes; stigma
Resumo:
Entre as barreiras sociais enfrentadas pelas pessoas com deficiência estão os preconceitos, definidos como atitudes de aversão e hostilidade por pertencer a um grupo, sob as quais são atribuídas condições indesejáveis. A percepção do preconceito das pessoas com deficiência pode ser determinada por fatores ligados a variáveis sociodemográficas como idade, gênero, nível socioeconômico, tamanho da localidade e Índice de Desenvolvimento Humano (IDH), porém, poucos estudos têm focado em diferenciar as experiências de pessoas com deficiência, especialmente no contexto mexicano. Esta pesquisa analisa as opiniões de 5,145 pessoas com deficiência, por meio da Encuesta Nacional de Discriminación (ENADIS) 2017, usando análise de variância. A análise fatorial confirmatória produz uma estrutura com dois fatores: um endógeno e outro exógeno. Os resultados indicam que idosos, pessoas que vivem em estratos sociodemográficos baixos e que vivem em localidades com baixo IDH enfrentam maior preconceito. Discute-se o impacto do envelhecimento e da disponibilidade de recursos sociais na percepção do preconceito das pessoas com deficiência.
Palavras-chave: deficiência; preconceito; discriminação; atitudes; estigma
Recibido: 27/10/2022
Aceptado: 27/11/2023
Históricamente, las personas con discapacidad (PD) han sido un grupo excluido del acceso a sus derechos fundamentales para participar activamente a nivel económico, social, político y cultural (Ainscow et al., 2014; Comisión Económica para América Latina y el Caribe, 2021; Instituto Nacional de Estadística y Geografía (INEGI), 2019; Organización Mundial de la Salud (OMS), 2011; Organización de las Naciones Unidas, 2015; Peña & Estay, 2019; Pinilla-Roncancio, 2015). Sin embargo, en años recientes ha tenido lugar un cambio de paradigma, al reconocer que la discapacidad no se reduce a una condición, enfermedad o afectación personal (física o psicológica), sino que surge en la interacción del individuo con su medio social, cuando no existen condiciones suficientes para su inclusión plena (García-Vásquez, 2015; México, 2011; Oliver, 1998, 2013; Rembis, 2010; Shakespere, 2006). Este paradigma, al que se conoce como modelo social de la discapacidad, ha generado un notable avance en materia de derechos civiles para este colectivo, aunque aún persisten barreras físicas, sociales y actitudinales.
En la mayoría de los casos, las instituciones (por ejemplo, centros escolares, universidades o edificios de gobierno) no están preparadas para incluir a PD, en especial cuando provienen de entornos económicamente menos privilegiados (Cruz & Casillas, 2017; Garín & Suárez, 2016; Pinilla-Roncancio, 2015). La existencia de prejuicios asociados con las habilidades de las PD para trabajar, participar en actividades competitivas y adquirir habilidades son algunas de las causas de la invisibilización de este grupo (INEGI, 2016; OMS, 2011; Pinilla-Roncancio, 2015). En este sentido, los prejuicios se definen como actitudes de aversión y hostilidad hacia una persona por pertenecer a un grupo o tener cierta característica bajo la cual se le adjudican condiciones indeseables. Los prejuicios suelen extenderse en forma de opiniones socialmente aceptadas y justificadas sobre las PD, que finalmente afectan sus relaciones sociales (INEGI, 2016; Rodríguez, 2006).
La literatura sobre prejuicios y el análisis de grupos ha documentado que existe una tendencia a valorar favorablemente a personas que se consideran cercanas o familiares en comparación con aquellas que se perciben como lejanas o extrañas (Allport, 1954; Babik & Gardner, 2021; Harder et al., 2019; Nowicki et al., 2014; Pettigrew, 1979). De acuerdo con la teoría del error último de atribución, Pettigrew (1979) señala que los atributos negativos del grupo de pertenencia (endogrupo) normalmente son atribuidos a factores externos, situacionales y pasajeros, mientras que los atributos negativos de grupos externos (exogrupo) se conciben como internos, disposicionales e inmutables. Esto implica que las valoraciones negativas que se hacen de las PD a nivel global tiendan a percibirse como permanentes, inmutables y hasta naturales. Por su parte, según el modelo de contenido de estereotipos, Fiske et al. (2002) postulan que las creencias estereotipadas se fundamentan en dos dimensiones: competitividad (capacidad para avanzar en la jerarquía social) y calidez (capacidad para dañar o perturbar el statu quo). Desde esta teoría, el grupo de PD es percibido como cálido y poco competitivo, lo que usualmente se traduce en actitudes de paternalismo y condescendencia (Nario-Redmond et al., 2019).
Aunque comúnmente se hace referencia a las PD como si fueran un grupo monolítico y homogéneo, los prejuicios a los que se enfrentan pueden variar considerablemente dependiendo de sus características individuales, historia personal y entorno social (Pinilla-Roncancio, 2015; Rembis, 2010; Rodríguez, 2006). Las variables sociales y territoriales afectan directa o indirectamente en el grado de exclusión social de las PD (Pinilla-Roncancio, 2015). La literatura sugiere que, entre las PD, la percepción de prejuicios se relaciona con el contacto con otros con su misma condición, su nivel educativo, el género, el origen étnico, el tipo de discapacidad y la edad (Alvarez-Galvez & Salvador-Carulla, 2013; Harder et al., 2019).
En relación con el género, los prejuicios explícitos que manifiestan las PD varían dependiendo del método de medición. Por ejemplo, Harder et al. (2019) concluyeron que los hombres con discapacidad prefieren pasar más tiempo con personas sin discapacidad, mientras que otros estudios sugieren que las mujeres con discapacidad muestran mayor inclinación hacia “sentirse discriminadas por su discapacidad” (Branco et al., 2019; Dammeyer & Chapman, 2018). En cuanto a la edad, gran porcentaje de las PD también son adultos mayores (INEGI, 2019; OMS, 2011). Sin embargo, se tiene poco conocimiento sobre el impacto que tiene la edad en la percepción de prejuicios (Ruggieri & Cuesta, 2018). La evidencia disponible parece indicar que la percepción de prejuicios de las PD aumenta significativamente al llegar a la vejez (Alvarez-Galvez & Salvador-Carulla, 2013; Branco et al., 2019; Harder et al., 2019).
Por otra parte, la prevalencia de discapacidad en los grupos etarios más jóvenes varía a nivel internacional desde un 0.4 %, hasta un 12.7 %, dependiendo del estudio y la herramienta de evaluación (OMS, 2011). En México, se estima que el 8.8 % de la población entre 5 y 19 años presenta alguna discapacidad (INEGI, 2019). Se ha observado que los niños con discapacidad tienen mayores probabilidades de presentar problemas socioemocionales, bajos niveles de integración social con sus pares y una atención deficiente en los centros escolares (Anatolievna, 2020; Rosa & Menezes, 2019; Santa Cruz et al., 2021). Al analizar la situación de las PD según el tamaño de localidad en la que habitan, se ha señalado que en las grandes ciudades de América Latina no se tiene una estrategia clara en torno al diseño del espacio público y accesibilidad (Linares-García et al., 2018; Rairan et al., 2017); sin embargo, el grado en que esto puede afectar la percepción de prejuicios de las PD permanece poco estudiado.
La evidencia empírica muestra que las predicciones más consistentes de logro social se llevan a cabo a partir de la situación de clase y la zona habitacional (Rodríguez, 2006). De ello se desprende que el nivel socioeconómico representa un aspecto determinante de la condición de autodeterminación de las PD (Álvarez-Aguado et al., 2021; Alvarez-Galvez & Salvador-Carulla, 2013). Un porcentaje considerable de personas pobres en países en vías de desarrollo también son PD, y los hogares con PD tienen un mayor riesgo de pobreza (Elwan, 1999; Pinilla-Roncancio, 2015). En parte, esto se explica debido a que las PD no van a alcanzar los mismos niveles de bienestar que una persona sin discapacidad, incluso si disponen de recursos económicos comparables, debido a los costos derivados de sus necesidades específicas, como terapias, tratamientos médicos, etc. (Pinilla-Roncancio, 2015).
Aunado a lo anterior, las PD presentan, en general, menores niveles de instrucción, menor inserción en el ámbito laboral y menor acceso a los servicios de salud, factores relacionados con el índice de desarrollo humano (IDH). El IDH es un indicador formulado por el Programa de Naciones Unidas para el Desarrollo (PNUD) y representa una síntesis del estatus de una localidad determinada sobre el análisis de tres dimensiones: salud, educación e ingreso (PNUD, 2014). El IDH permite apreciar un panorama general sobre el nivel de inclusión/exclusión en el que se encuentran sus habitantes en general, y las PD en particular (Peña & Estay, 2019). El nivel de desarrollo humano, social y económico del lugar de residencia influye en el tipo y la calidad de las oportunidades y servicios disponibles para todos los miembros de la sociedad, incluyendo a las PD (Pinilla-Roncancio, 2015). Por ejemplo, se ha encontrado que las PD con altos niveles de educación (Harder et al., 2019) y que habitan en países con sistemas de salud más desarrollados (Alvarez-Galvez & Salvador-Carulla, 2013) muestran una menor percepción de prejuicios.
De acuerdo con el modelo social de la discapacidad, los prejuicios que enfrentan las PD se relacionan con las barreras que se encuentran en su entorno social. Desde esta perspectiva, personas con deficiencias similares pueden encontrarse en situaciones diferentes de exclusión, dependiendo de sus oportunidades de acceso a servicios como salud, educación, empleo, etc. Por otra parte, la literatura indica que la edad y el género también pueden marcar diferencias importantes en la percepción de prejuicios en las PD. Sin embargo, son pocos los estudios que examinen estas diferencias, especialmente en el contexto mexicano. Para ayudar a llenar este vacío, el presente trabajo plantea la siguiente pregunta de investigación: ¿Cómo varía la expresión abierta y hostil de prejuicios interiorizados por las PD a partir de variables personales y sociales? Como hipótesis, los grupos que se encuentran en mayor riesgo de discriminación y que, por lo tanto, podrían enfrentar mayores prejuicios son: a) las mujeres, b) los adultos mayores, c) las personas de nivel socio demográfico bajo y d) las personas que habitan en localidades pequeñas y con bajos índices de desarrollo humano. Para probar estas hipótesis, se comparó la puntuación media de estos grupos, mediante análisis de varianza, a partir de las respuestas recogidas en la Encuesta Nacional de Discriminación 2017 (INEGI, 2018; 2019; 2023) en México.
Método
Muestreo
El diseño de la ENADIS presentó un muestreo probabilístico, bietápico, estratificado y por conglomerados, tomando en cuenta las 32 entidades federativas de la República mexicana, buscando la representatividad de la muestra a nivel nacional. En su diseño, se formaron cuatro estratos sociodemográficos en los que se agruparon todas las unidades de muestreo del país (es decir, las viviendas que fueron objeto de estudio). Esta estratificación consideró las características sociodemográficas de los habitantes de las viviendas, así como las características físicas y el equipamiento de estas, expresadas por medio de 34 indicadores (INEGI, 2018).
Las entidades federativas fueron agrupadas según su IDH a partir de los datos publicados por el PNUD (2015), el cual se representa a través de una puntuación que va de 0 a 1, siendo el promedio mundial de 0.700. El cálculo del IDH de una localidad se llevó a cabo a partir de los siguientes indicadores: la esperanza de vida al nacer (salud), los años promedio de escolaridad, los años esperados de escolarización (educación) y el ingreso nacional bruto (INB) per cápita (ingreso). La clasificación se hizo en cuatro niveles: ocho estados se ubicaron como IDH muy alto, con una puntuación de entre 0.759 y 0.830 (Baja California Sur, Baja California Norte, Coahuila, Colima, Ciudad de México, Nuevo León, Querétaro y Sonora), ocho se ubicaron como un IDH alto, con una puntuación de entre 0.743 y 0.758 (Aguascalientes, Campeche, Jalisco, Estado de México, Morelos, Quintana Roo, Sinaloa y Tamaulipas), ocho se ubicaron como IDH medio bajo, con una puntuación de entre 0.721 y 0.742 (Chihuahua, Durango, Hidalgo, Nayarit, San Luis Potosí, Tabasco, Tlaxcala, Yucatán) y finalmente ocho estados se ubicaron como nivel bajo, con una puntuación de entre 0.667 y 0.720 (Chiapas, Guanajuato, Guerrero, Michoacán de Ocampo, Oaxaca, Puebla, Veracruz y Zacatecas).
Participantes
La base de datos con los participantes fue retomada del sitio oficial del INEGI (2023), correspondiente al cuestionario módulo 2, cuya población objetivo son las personas con discapacidad, es decir, quienes indicaron tener alguna de las siguientes características: 1. Dificultades para caminar, subir o bajar escalones usando sus piernas; 2. Ver, aun usando lentes; 3. Mover o usar sus brazos o manos; 4. Aprender, recordar o concentrarse por alguna condición intelectual; 5. Oír, aun usando un aparato auditivo; 6. Hablar o comunicarse; 7. Bañarse, vestirse o comer; y 8. Realizar sus actividades diarias por una condición emocional o mental. Las características de la muestra de estudio pueden observarse en la Tabla 1.
Tabla 1: Descripción de las características sociodemográficas de los participantes en el estudio
Nota: Elaborado a partir de INEGI (2019)
Instrumento
La ENADIS 2017 consta de tres instrumentos (Cuestionario general, Cuestionario de opiniones y experiencias, y Cuadernillo de módulos). Su propósito fue recopilar información básica sobre la vivienda seleccionada y las personas que integran el hogar, así como explorar la opinión y experiencias sobre discriminación de la población objetivo (personas indígenas, personas con discapacidad, diversidad religiosa, personas adultas mayores, niñas y niños, adolescentes y jóvenes, mujeres y experiencias de discriminación), que se recaba a partir de los cuadernillos módulo. El presente trabajo retomó únicamente el cuadernillo módulo 2, dirigido a personas con discapacidad, recuperando las respuestas de los participantes con respecto a la sección de prejuicios, evaluados a través de cinco preguntas (ver Tabla 2). Las preguntas seleccionadas pueden caracterizar como expresiones de prejuicios clásicos y explícitos hacia las personas con discapacidad.
Tabla 2: Preguntas de la ENADIS 2017 incluidas en el presente estudio
Nota: Elaborado a partir de INEGI (2016)
En primer lugar, se evaluó la confiabilidad de la escala utilizando el coeficiente Omega de McDonald, obteniendo un índice de confiabilidad de .75, lo que se considera aceptable. En seguida, se evaluó la validez de constructo a través de un análisis factorial confirmatorio (AFC), partiendo de la hipótesis de que las cinco preguntas de prejuicios se agrupan en una sola dimensión. El método de extracción fue diagonal weighted least squares, ya que se considera apropiado para variables dicotómicas (Cheng-Hsien, 2016). El modelo se evaluó mediante los siguientes índices de bondad de ajuste: chi cuadrado con probabilidad asociada (X², p) mayor que .05, general fit index (GFI) mayor que .95, error de la raíz cuadrada de la media de aproximación (RMSEA) con valores entre .05 y .08, raíz cuadrada de la media de residuos cuadrados (SRMR) cercano a 0.05 (Valdés-Cuervo et al., 2019). Dado que los índices de bondad de ajuste mostraron resultados poco favorables, se optó por probar una solución bifactorial. La presencia de un factor con dos ítems se justifica siempre y cuando la correlación sea alta entre ellos y baja con el resto, y se sostenga la interpretabilidad del factor (Worthington & Whittaker, 2006). Al primer factor se le nombró prejuicios endogrupales, ya que representan juicios que las PD hacen sobre sus propias capacidades y quedó formado por las preguntas 1 y 2. Al segundo factor se le nombró prejuicios exogrupales, puesto que representan juicios que las PD adjudican a la sociedad o a otras personas, y quedó formado por las preguntas 3, 4 y 5. En este caso, la correlación entre el reactivo 1 y 2 (endogrupales) fue moderada (.57), mientras que con el resto fue baja (de entre .38 a .18). La literatura señala que la prueba X² puede llevar a rechazar soluciones razonablemente apropiadas cuando se trabaja con muestras grandes, por lo tanto, al observar que el resto de los indicadores mostraron un buen ajuste, se decidió retener el modelo. Los resultados de ambos modelos pueden visualizarse en la Tabla 3. La estructura del modelo bifactorial, la covarianza estandarizada entre los factores y los coeficientes de explicación de cada una de las preguntas se observa en la Figura 1.
Tabla 3: Índices de bondad de ajuste de los modelos unifactorial y bifactorial
Nota: El método de extracción utilizado fue diagonal weighted least squares. 1F = modelo unifactorial, 2F = modelo bifactorial.
Figura 1: Estructura del modelo bifactorial de prejuicios, cargas factoriales y covarianza entre factores
Procedimiento
Para el presente estudio se utilizaron los datos obtenidos en la ENADIS 2017, llevada a cabo por el INEGI (2016). Las entrevistas se realizaron cara a cara siguiendo un protocolo, teniendo lugar entre el 21 de agosto y el 13 de octubre del año 2017. La población de estudio de la ENADIS 2017 fueron todas las personas del hogar con las siguientes características: 12 años o más de edad, hablantes o autoadscritas indígenas, 12 años y más de edad con discapacidad, 12 años y más de edad perteneciente a la diversidad religiosa, 60 años y más de edad, 9 a 11 años de edad, 12 a 29 años de edad y mujeres de 18 años y más de edad. En total participaron 39,101 viviendas. El presente estudio retomó a los participantes que indicaron pertenecer al grupo de personas con discapacidad.
Para descargar la base de datos, los autores ingresaron al sitio oficial del INEGI (2023), accediendo al apartado de Encuestas, posteriormente al apartado de Especiales, donde finalmente se encuentra el apartado de Encuesta Nacional de Discriminación (ENADIS), versión 2017. Una vez dentro de esta sección, se ingresó al apartado de Datos abiertos, donde se encuentra un botón para la descarga de la base de datos. Al oprimir el botón de descarga, se obtuvo un archivo zip con el nombre de “conjunto_de_datos_enadis2017_cvs.zip”, que a su vez contiene 14 carpetas y un archivo CVS nombrado “0_indice_tablas_enadis2017.cvs”. Este archivo indica el nombre del cuestionario que corresponde a cada carpeta. A continuación, se extrajo la carpeta nombrada “tdiscapacidad_enadis2017”, donde se encuentran cinco carpetas más: “catalogos”, “conjunto_de_datos”, “diccionario_de_datos”, “metadatos” y “modelo_entidad_relación”.
La base de datos con las respuestas de los participantes de este estudio se encontró dentro de la carpeta “conjunto_de_datos”. Una vez obtenida la base de datos, se hicieron las modificaciones que se consideraron pertinentes en los nombres y etiquetas de las variables, con lo que se obtuvo la versión que finalmente fue utilizada para realizar los análisis estadísticos. Aunado a lo anterior, los participantes fueron agrupados por edad (en intervalos de 10 años), y se crearon los grupos de pertenencia a los distintos niveles del IDH a partir del estado de la república mexicana en que se encuentran.
Secuencia de análisis de datos
En primer lugar, se evaluó la validez de constructo mediante el método de AFC. Paso seguido, se evaluó la confiabilidad de la escala, utilizando el índice omega de McDonald. Posteriormente, se utilizó la prueba de t de student para comparar a los participantes por género y el análisis de varianza de un factor (One Way ANOVA) para compararlos por grupo de edad, estrato sociodemográfico, nivel de desarrollo humano y tamaño de la localidad. Se parte del supuesto de que el análisis de varianza es lo suficientemente robusto cuando se cuentan con muestras grandes (Page et al., 2003). Previo al análisis, se verificó que se cumpliera el supuesto de homogeneidad de varianza, a través del Test de Levene. A su vez, se calculó el tamaño del efecto y la potencia estadística (Cárdenas & Arancibia, 2014). Por otra parte, se utilizó la prueba post hoc de Scheffe, para visualizar a los grupos entre los cuales se estableció la diferencia. En el caso donde no se cumplió con el supuesto de homogeneidad de varianza, se utilizó la prueba de ANOVA con corrección de Welch y la prueba post hoc de Games-Howell. Los análisis se llevaron a cabo en el software Rstudio versión 4.2.0 (R Core Team, 2023), utilizando los paquetes DescTools (Signorell, 2023), lavaan (Rosseel, 2012), MPsychoR (Mair, 2020), psych (Revelle, 2023), RcmdrMisc (Fox & Marquez, 2023) y rsatix (Kassambara, 2023).
Resultados
En primer lugar, se llevaron a cabo análisis descriptivos con la escala completa de prejuicios, así como con las variables de prejuicios exogrupales y endogrupales. Las puntuaciones de la escala completa indican que los participantes contestaron que “sí” en promedio a 3 de las 5 afirmaciones, lo que sugiere un nivel moderado de prejuicios interiorizados sobre las personas con discapacidad. La puntuación de prejuicios exogrupales se encuentra por encima de la media teórica, a diferencia de la puntuación de prejuicios endogrupales, que se encuentra por debajo. Por otra parte, las puntuaciones de asimetría y curtosis sugieren una distribución normal (ver Tabla 4).
Tabla 4: Estadísticos descriptivos de prejuicios endogrupales, exogrupales y de la escala total
Posteriormente, se llevaron a cabo las comparaciones de medias entre grupos para la escala completa y prejuicios exogrupales y endogrupales, cuyos resultados se encuentran detallados en la Tabla 5. Respecto a los resultados por género, aunque se obtuvieron diferencias significativas tanto en la escala completa como en prejuicios exogrupales y endogrupales, con una puntuación mayor las mujeres (lo que indica que en general perciben más prejuicios), el tamaño del efecto no alcanzó el mínimo aceptable, lo que significa que no tiene un valor práctico. Posteriormente, se comparó a los participantes por edad. Se obtuvieron diferencias significativas para la escala completa y los prejuicios endogrupales y exogrupales. Sin embargo, el tamaño del efecto solo alcanzó un valor práctico para la escala total y para los prejuicios endogrupales. El análisis post hoc mostró que existen diferencias significativas entre múltiples grupos etarios, con la constante de que los prejuicios aumentan con la edad. Las diferencias entre grupos pueden apreciarse en la Tabla 6.
En relación con el tamaño de la localidad se encontraron diferencias significativas en la escala completa y en prejuicios endogrupales; sin embargo, solo se alcanzó un valor práctico para los prejuicios endogrupales. La prueba post hoc revela que es en las localidades pequeñas donde las PD muestran mayores prejuicios. En cuanto al estrato sociodemográfico, se encontraron diferencias significativas en la escala total, prejuicios exogrupales y endogrupales; sin embargo, solo se alcanzó un valor práctico en la escala total y en prejuicios endogrupales. Las pruebas post hoc revelaron diferencias entre múltiples grupos (específicamente: muy alto y bajo, muy alto y medio bajo, y medio bajo y medio alto); la tendencia fue que los grupos con menor nivel sociodemográfico mostraron mayores puntuaciones en la escala de prejuicios. Finalmente, en cuanto al IDH, se encontraron diferencias significativas para la escala total, prejuicios exogrupales y endogrupales, pero no se encontró valor práctico para ninguna de las variables. Debido a lo anterior, se llevaron a cabo pruebas t de student comparando solo las puntuaciones de los grupos con la diferencia más grande.
Se obtuvieron los siguientes resultados: escala total t = -6.20; p < .001; d = -0.25, prejuicios exogrupales t = -4.12; p < .001; d = -0.16, y prejuicios endogrupales t = -5.98; p < .001; d = 0.24. Se observa un valor práctico para la escala total y prejuicios endogrupales, con mayores puntuaciones de prejuicios para los participantes que se encuentran en localidades con un nivel de IDH bajo.
Tabla 5: Estadísticos descriptivos y análisis de varianza para la puntuación de prejuicios y variables sociodemográficas de personas con discapacidad
Nota: La potencia estadística fue > 0.80 en todos los casos.
Tabla 6: Resultados de la prueba post hoc al comparar la media en la percepción de prejuicios en la escala total por grupos de edad de las personas con discapacidad
Discusión y conclusiones
Con relación a las diferencias en los prejuicios percibidos por género, los resultados apoyan lo descrito por Branco et al. (2019) y Dammeyer y Chapman (2018), al señalar que son las mujeres con discapacidad quienes reportan mayor discriminación en comparación con los hombres. A los problemas asociados a los roles de género (violencia de género, brecha salarial, asignación del cuidado de otros, etc.) se suman las actitudes de paternalismo, infantilismo y capacitismo sobre la discapacidad (Cobeñas, 2018; Cruz, 2004; Morris, 1993; Pinilla-Roncancio, 2015; Rodríguez, 2011). Sin embargo, es necesario señalar que la potencia estadística resultó ser muy baja, lo que pone en tela de juicio la validez de estos resultados. Diversas autoras (Cobeñas, 2018; Rodríguez, 2011) afirman que las diferencias entre hombres y mujeres tienden a invisibilizarse si no se introduce adecuadamente una perspectiva de género en el diseño metodológico, por lo que es posible que las preguntas utilizadas en el presente estudio fallen en señalar situaciones relevantes para comprender los prejuicios que enfrentan las mujeres con discapacidad, por ejemplo, al reconocer su derecho para ejercer su sexualidad, estudiar o llevar a cabo actividades independientes fuera del hogar, etc.
Por otra parte, se encontraron diferencias a partir de los grupos de edad. En general, a mayor edad, mayores prejuicios. Esto contradice lo encontrado por Harder et al. (2019), que señalan una relación no lineal entre la edad y la percepción de prejuicios explícitos sobre la discapacidad. Los resultados del presente estudio muestran una tendencia que va en aumento, y que en ningún momento decrece. Posibles explicaciones de estas diferencias podrían atribuirse a los instrumentos de medida utilizados, diferencias culturales o al hecho de estudiar solo a personas con discapacidad. Con todo ello, se refuerza la hipotesis de que los adultos mayores con discapacidad enfrentan mayor riesgo de exclusión. De acuerdo con el modelo de contenido de estereotipos, tanto las PD como los adultos mayores son percibidos usualmente como poco competitivos y dependientes, lo cual lleva a que sean tratados de manera condescendiente y sobreprotectora (Fiske et al., 2002; Nario-Redmond et al., 2019). Al respecto, Branco et al. (2019) añaden que, al igual que las PD, los adultos mayores son más vulnerables al aislamiento social y enfrentan prejuicios relacionados con la percepción del cuerpo, la autonomía y la justificación de su incapacidad con explicaciones biologicistas. Diversos estudios señalan que ambos grupos se encuentran en mayor riesgo de dependencia funcional (Escobar et al., 2012; Stuck et al., 1999; Vargas-Acevedo et al., 2017), lo cual pudo verse reflejado en su tendencia a responder con mayor acuerdo con los prejuicios endogrupales, relacionados con sus capacidades y potencialidades. Por lo tanto, para promover la autonomía de las PD en la edad adulta, es menester contar con un ambiente de aceptación que les permita sentirse aceptados y continuar adquiriendo nuevas habilidades (Ruggieri & Cuesta, 2018).
En el presente estudio también se encuentran diferencias significativas en los prejuicios de las PD en función de su nivel sociodemográfico. Estas diferencias se observan tanto en la escala general como en los prejuicios endogrupales, siendo más pronunciados entre aquellos pertenecientes a estratos sociodemográficos bajos. Esto respalda lo planteado por autores como Álvarez-Aguado et al. (2021) y Rodríguez (2006), quienes consideran que el estatus socioeconómico desempeña un papel crucial en la autodeterminación de las PD. Desde la perspectiva del modelo social de la discapacidad, la relación entre la discapacidad y factores como la pobreza, niveles educativos bajos, dificultades en la inserción laboral y acceso limitado a servicios de salud parece influir en la percepción de prejuicios de las PD (Pinilla-Roncancio, 2015), especialmente en la valoración de sus capacidades (prejuicios endogrupales). En estrecha relación con lo anterior, se exploró la influencia del IDH de la localidad. En este contexto, se observaron diferencias significativas solo entre los grupos con IDH muy alto y bajo, indicando que aquellos que residen en áreas con un IDH bajo exhiben mayores niveles de prejuicios. Este patrón, similar al encontrado en estratos socioeconómicos bajos, resalta la relación entre el entorno socioeconómico y la percepción de prejuicios.
Pinilla-Roncancio (2015) explica estas diferencias argumentando que, para cubrir las necesidades propias de una PD, es necesario una mayor inversión de recursos económicos. Sin embargo, al considerar el grado de marginación de la comunidad en que se habita, es posible deducir que la facilidad de acceso a oportunidades de educación, salud y empleo también se traducen en mayores oportunidades de inclusión social para las PD, lo cual explicaría por qué las PD que habitan en localidades con IDH alto manifiestan menores prejuicios. Lo anterior apoya la hipótesis de que la percepción de prejuicios es menor entre las PD con mayores niveles de educación y que habitan en sectores con sistemas de salud más desarrollados (Alvarez-Galvez & Salvador-Carulla, 2013; Harder et al., 2019). Finalmente, los resultados indican que las PD que habitan en localidades pequeñas muestran mayores prejuicios endogrupales. Lo anterior puede estar relacionado con la ausencia de oportunidades de educación y empleo para las personas con discapacidad en localidades pequeñas (por ejemplo, en un contexto rural), lo que no les permite desarrollar sus capacidades, destrezas y habilidades que finalmente se traducen en una vida más autónoma.
Limitaciones y futuras líneas de investigación
Se considera una limitante del presente estudio que no fuera posible diferenciar las respuestas de los participantes a partir del tipo de discapacidad que presentan, lo cual es una variable de gran interés. En complemento de lo anterior, la propuesta de la ENADIS 2017 se basa en prejuicios clásicos y explícitos, por lo que futuras líneas de investigación podrían incluir la medición de prejucios implícitos y modernos sobre la discapacidad, asociados al paternalismo, la lástima o la envidia hacia las PD. De igual forma, resulta indispensable diferenciar la experiencia de las PD en función del género, y cómo los roles de género influyen en los prejuicios que enfrentan las mujeres con discapacidad. Futuras investigaciones deberían concentrarse en arrojar luz sobre qué factores determinan la percepción de prejuicios de las PD en la edad adulta. Finalmente, es de gran interés estudiar por qué disminuyen los prejuicios manifestados por las PD conforme aumenta su nivel de estudios y la calidad de los servicios de salud disponibles.
Referencias
Ainscow, M., Dyson, A., & Weiner, S. (2014). From exclusion to inclusion: A review of international literature on ways of responding to students with special education needs in schools. En-clave Pedagógica, 13, 13-30.
Akrami, N., Ekehammar, B., Claesson, M., & Sonnander, K. (2006). Classical and modern prejudice: Attitudes toward people with intellectual disabilities. Research in Developmental Disabilities, 27(6), 605-617. https://doi.org/10.1016/j.ridd.2005.07.003
Allport, G. W. (1954). The Nature of Prejudice. Addison Wesley.
Álvarez-Aguado, I., Vega, C. V., Spencer, G. H., González-Carrasco, F., Jarpa, A. M., & Campaña, V. K. (2021). Autodeterminación en personas con discapacidad intelectual que envejecen y algunas variables que inciden en su desarrollo. Interdisciplinaria, 38(3), 139-154. https://doi.org/10.16888/interd.2021.38.3.8
Alvarez-Galvez, J., & Salvador-Carulla, L. (2013). Perceived discrimination and self-rated health in Europe: Evidence from the European Social Survey (2010). PLOS ONE, 8(9), 1-10. https://doi.org/10.1371/journal.pone.0074252
Anatolievna, E. Z. (2020). Inclusión de los niños con capacidades diferentes en escuelas regulares en México: propósitos y realidad. Andamios, 17(43), 249-270. https://doi.org/10.29092/uacm.v17i43.774
Babik, I., & Gardner, E. S. (2021). Factors affecting the perception of disability: A developmental perspective. Frontiers in Psychology, 12, 1-26. https://doi.org/10.3389/fpsyg.2021.702166
Branco, C., Ramos, M. R., & Hewstone, M. (2019). The association of group-based discrimination with health and well-being: A comparison of ableism with other “Isms.” Journal of Social Issues, 75(3), 814-846. https://doi.org/10.1111/josi.12340
Cárdenas, M., & Arancibia, H. (2014). Potencia estadística y cálculo del tamaño del efecto en G * Power: Complementos a las pruebas de significación estadística y su aplicación en psicología. Salud y Sociedad, 5(2), 210-224. https://doi.org/10.22199/S07187475.2014.0002.00006
Cheng-Hsien, L. (2016). Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares. Behavior Research Methods, 48(3), 936-949. https://doi.org/10.3758/s13428-015-0619-7
Cobeñas, P. (2018). Investigar con mujeres con discapacidad: reflexiones epistemológicas y metodológicas desde el enfoque feminista-emancipador. Revista Brasileña de Estudios Pedagógicos, 99(251), 132-147. https://doi.org/10.24109/2176-6681.rbep.99i251.3473
Comisión Económica para América Latina y el Caribe. (2021). Personas con discapacidad y sus derechos frente a la pandemia de COVID-19: que nadie se quede atrás. Informes Covid-19. https://www.cepal.org/es/publicaciones/46600-personas-discapacidad-sus-derechos-frente-la-pandemia-covid-19-que-nadie-se
Cruz, M. P. (2004). Mujeres con discapacidad y su derecho a la sexualidad. Política y Cultura, (22), 147-160.
Cruz, R. V., & Casillas, M. Á. A. (2017). Las instituciones de educación superior y los estudiantes con discapacidad en México. Revista de la Educación Superior, 46(181), 37-53. https://doi.org/10.1016/j.resu.2016.11.002
Dammeyer, J., & Chapman, M. (2018). A national survey on violence and discrimination among people with disabilities. BMC Public Health, 18, 355. https://doi.org/10.1186/s12889-018-5277-0
Dunn, D. S. (2019). Outsider privileges can lead to insider disadvantages: some psychosocial aspects of ableism. Journal of Social Issues, 75(3), 665-682. https://doi.org/10.1111/josi.12331
Elwan, A. (1999). Poverty and Disability: A Survey of the Literature. https://documents1.worldbank.org/curated/en/488521468764667300/pdf/multi-page.pdf
Escobar, B. M. Á., Puga, G. M. a. D., & Martín, B. M. (2012). Análisis de la esperanza de vida libre de discapacidad a lo largo de la biografía: De la madurez a la vejez. Gaceta Sanitaria, 26(4), 330–335. https://doi.org/10.1016/j.gaceta.2011.12.016
Fiske, S. T., Cuddy, A. J. C., Glick, P., & Xu, J. (2002). A model of (often mixed) stereotype content: Competence and warmth respectively follow from perceived status and competition. Journal of Personality and Social Psychology, 82(6), 878-902. https://doi.org/10.1037/0022-3514.82.6.878
Fox, J., & Marquez, M. (2023). RcmdrMisc: R Commander Miscellaneous Functions. R package version 2.9-1. https://CRAN.R-project.org/package=RcmdrMisc
García-Vásquez, E. (2015). La discriminación por discapacidad como tema emergente en el contexto de los movimientos sociales contemporáneos. Revista de La Facultad de Medicina, 63(3). https://doi.org/10.15446/revfacmed.v63n3sup.50571
Garín, J., & Suárez, C. (2016). Inclusión y grupos en situación de vulnerabilidad: orientaciones para repensar el rol de las universidades. Sinéctica. Revista Electrónica de Educación, 46, 1-15.
Harder, J. A., Keller, V. N., & Chopik, W. J. (2019). Demographic, experiential, and temporal variation in ableism. Journal of Social Issues, 75(3), 1-24. https://doi.org/10.1111/josi.12341
Instituto Nacional de Estadística y Geografía. (2016). Diseño conceptual de la Encuesta Nacional sobre Discriminación (ENADIS) 2017. https://acortar.link/dXQ35Z
Instituto Nacional de Estadística y Geografía. (2018). Encuesta Nacional sobre Discriminación. Diseño muestral. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825100797
Instituto Nacional de Estadística y Geografía. (2019). Estadística a propósito del día internacional de las personas con discapacidad. Comunicado 638/19. https://acortar.link/sCTMf8
Kassambara, A. (2023). rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.2. https://CRAN.R-project.org/package=rstatix
Linares-García, J., Hernández-Quirama, A., & Rojas-Betancur, H. M. (2018). Accesibilidad espacial e inclusión social: experiencias de ciudades incluyentes en Europa y Latinoamérica. Civilizar: Ciencias Sociales y Humanas, 18(35), 115-128. https://doi.org/10.22518/usergioa/jour/ccsh/2018.2/a09
Mair, P. (2020). MPsychoR: Modern Psychometrics with R. R package version 0.10-8. https://CRAN.R-project.org/package=MPsychoR
México. (2011, 30 de mayo). Ley General para la Inclusión de las Personas con Discapacidad. https://www.diputados.gob.mx/LeyesBiblio/pdf/LGIPD.pdf
Morris, J. (1993). Feminism and disability. Feminist Review, 43(1), 57-70. https://doi.org/10.1057/fr.1993.4
Nario-Redmond, M. R. (2020). ABLEISM. The Causes and Consequences of Disability Prejudice. John Wiley y Sons. https://doi.org/10.1002/9781119142140
Nario-Redmond, M. R., Kemerling, A. A., & Silverman, A. (2019). Hostile, benevolent, and ambivalent ableism: Contemporary manifestations. Journal of Social Issues, 75(3), 726-756. https://doi.org/10.1111/josi.12337
Nowicki, E. A., Brown, J., & Stepien, M. (2014). Children’s thoughts on the social exclusion of peers with intellectual or learning disabilities. Journal of Intellectual Disability Research, 58(4), 346-357. https://doi.org/10.1111/jir.12019
Oliver, M. (1998). ¿Una sociología de la discapacidad o una sociología discapacitada? En L. Barton (Ed.), Discapacidad y Sociedad (pp. 34–58). Morata.
Oliver, M. (2013). The social model of disability: Thirty years on. Disability and Society, 28(7), 1024-1026. https://doi.org/10.1080/09687599.2013.818773
Organización de las Naciones Unidas. (2015). Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible. https://unctad.org/system/files/official-document/ares70d1_es.pdf
Organización Mundial de la Salud. (2011). Informe mundial sobre la discapacidad. https://apps.who.int/iris/handle/10665/75356
Page, M. C., Braver, S. L., & MacKinnon, D. P. (2003). Levine´s guide to SPSS for analysis of variance. Routledge.
Peña, T. C. L., & Estay, S. J. G. (2019). La inclusión social de personas con discapacidad: un tema de agenda política-institucional. Acta Sociológica, (80), 101-120. https://doi.org/10.22201/fcpys.24484938e.2019.80.76293
Pettigrew, T. F. (1979). The ultimate attribution error: Extending Allport’s cognitive analysis of prejudice. Personality and Social Psychology Bulletin, 5(4), 461-476. https://doi.org/10.1177/014616727900500407
Pinilla-Roncancio, M. (2015). Disability and poverty: Two related conditions. A review of the literature. Revista Facultad de Medicina, 63(3), 113-123. https://doi.org/10.15446/revfacmed.v63n3sup.50132
Programa de las Naciones Unidas para el Desarrollo. (2014). Índice de Desarrollo Humano Municipal en México. https://acortar.link/dIG4HF
Programa de las Naciones Unidas para el Desarrollo. (2015). Índice de Desarrollo Humano para las entidades federativas, México 2015. https://acortar.link/2o45Uc
R Core Team. (2023). A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Austria. https://www.R-project.org/.
Rairan, F. S. G., López, J. R. C., Castro, L. A. G., Garzón, D. A. S., & Mosquera, N. R. (2017). Orientación de pasajeros con discapacidad visual dentro del Sistema de Transporte Masivo Transmilenio, mediante geolocalización satelital. Ingeniería, 22(2), 283-297. https://doi.org/10.14483/udistrital.jour.reving.2017.2.a08
Rembis, M. (2010). Yes, we can change: disability studies - enabling equality. Journal of Postsecondary Education and Disability, 23(1), 19-28.
Revelle, W. (2023). psych: Procedures for Psychological, Psychometric, and Personality Research. R package version 2.3.9. https://CRAN.R-project.org/package=psych.
Rodríguez, J. Z. (2006). Un marco teórico para la discriminación. https://www.conapred.org.mx/documentos_cedoc/marco teorico para la discriminacion-Ax.pdf
Rodríguez, P. (2011). Feminismos periféricos. Revista Sociedad y Equidad, 2, 23-45. https://doi.org/10.5354/rse.v0i2.14426
Rosa, L. R., & Menezes, A. B. (2019). Educational inclusion and social interaction: A literature review. Trends in Psychology, (2), 385-400. https://doi.org/10.9788/TP2019.2-07
Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. https://doi.org/10.18637/jss.v048.i02
Ruggieri, V., & Cuesta, J. L. G. (2018). Envejecimiento y trastorno del espectro autista. Medicina, 78, 69-74.
Santa Cruz, C., Espinoza, V., & Hohlberg, E. (2021). Problemas socioemocionales en niños con discapacidad auditiva, discapacidad visual y desarrollo típico. Revista Latinoamericana de Educación Inclusiva, 15(1), 95-116. https://doi.org/10.4067/s0718-73782021000100095
Shakespere, T. (2006). The Social Model of Disability. En L. J. Davis (Ed.), The Disability Studies Reader (pp. 195-203). Taylor y Francis Group.
Signorell, A., (2023). DescTools: Tools for Descriptive Statistics. https://andrisignorell.github.io/DescTools/
Stuck, A. E., Walthert, J. M., Nikolaus, T., Büla, C. J., Hohmann, C., & Beck, J. C. (1999). Risk factors for functional status decline in community-living elderly people: A systematic literature review. Social Science and Medicine, 48(4), 445-469. https://doi.org/10.1016/S0277-9536(98)00370-0
Valdés-Cuervo, A. A., García-Vázquez, F. I., Torres-Acuña, G. M., Urías-Murrieta, M., & Grijalva-Quiñonez, C. S. (2019). Medición en investigación educativa con apoyo del SPSS y el AMOS. Clave editorial.
Vargas-Acevedo, C. A., Alzate-Posada, M. L., López-Díaz, L., & Velásquez, V. F. (2017). Dolor en personas ancianas con dependencia: programa de visita domiciliaria adaptado culturalmente a población rural. Revista de Salud Pública, 19(4), 519-526. https://doi.org/10.15446/rsap.v19n4.43527
Worthington, R. L., & Whittaker, T. A. (2006). Scale development research: A content analysis and recommendations for best practices. The Counseling Psychologist, 34(6), 806-838. https://doi.org/10.1177/0011000006288127
Disponibilidad de datos: El conjunto de datos que apoya los resultados de este estudio se encuentra disponible en la web del Instituto Nacional de Estadística y Geografía (INEGI): https://www.inegi.org.mx/programas/enadis/2017/#Datos_abiertos
Cómo citar: Sainz Palafox, M., Vera Noriega, J. A., Peña Ramos, M. O., & Tánori Quintana, J. (2024). Variables sociodemográficas y percepción de prejuicios de las personas con discapacidad. Ciencias Psicológicas, 18(1), e-3109. https://doi.org/10.22235/cp.v18i1.3109
Contribución de los autores (Taxonomía CRediT): 1. Conceptualización; 2. Curación de datos; 3. Análisis formal; 4. Adquisición de fondos; 5. Investigación; 6. Metodología; 7. Administración de proyecto; 8. Recursos; 9. Software; 10. Supervisión; 11. Validación; 12. Visualización; 13. Redacción: borrador original; 14. Redacción: revisión y edición.
M. A. S. P. ha contribuido en 1, 2, 3, 6, 9, 13, 14; J. A. V. N. en 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14; M. O. P. R. en 2, 3, 6, 14; J. T. Q. en 1, 2, 3, 5, 6, 14.
Editora científica responsable: Dra. Cecilia Cracco.
10.22235/cp.v18i1.3109
Original Articles
Sociodemographic variables and prejudices perception from disabled people
Variables sociodemográficas y percepción de prejuicios de las personas con discapacidad
Variáveis sociodemográficas e percepção de preconceito de pessoas com deficiência
Miguel Angel Sainz Palafox1 ORCID 0000-0002-1240-6740
José Ángel Vera Noriega2 ORCID 0000-0003-2764-4431
Martha Olivia Peña Ramos3 ORCID 0000-0002-5781-8781
Jesús Tánori Quintana4 ORCID 0000-0002-6485-2267
1 Centro de Investigación en Alimentación y Desarrollo A.C., Mexico
2 Centro de Investigación en Alimentación y Desarrollo A.C., Mexico, avera@ciad.mx
3 Centro de Investigación en Alimentación y Desarrollo A.C., Mexico
4 Instituto Tecnológico de Sonora, Mexico
Abstract:
People with disabilities face numerous social barriers, including prejudices, defined as hostile and aversive attitudes towards members of a stigmatized group. The prejudice's perception among people with disabilities may be a function of sociodemographic variables, however, only a few studies have deepened such differences in the experience of people with disabilities, especially in the Mexican context. The present study examines the opinions of 5145 people with disabilities through the Encuesta Nacional de Discriminación (ENADIS) 2017 (National Survey about Discrimination) by age, sex, socioeconomic level, location size and the Human Development Index (HDI). The confirmatory factor analysis shows two factors: in-group and out-group prejudices. Results in the comparisons reveal that the elderly, people with low sociodemographic status, and those living in locations with low HDI face higher means of prejudice on the total and in-group scales. The impact of aging and the availability of social services on the perception of prejudice by people with disabilities is discussed.
Keywords: disability; prejudice; discrimination; attitudes; stigma
Resumen:
Entre las barreras sociales que enfrentan las personas con discapacidad se encuentran los prejuicios, definidos como actitudes de aversión y hostilidad por la pertenencia a un grupo al que se le adjudican características indeseables. La percepción de prejuicios puede estar determinada por factores vinculados a variables sociodemográficas; sin embargo, pocos estudios se han enfocado en diferenciar las experiencias de las personas con discapacidad, en especial en el contexto mexicano. Se examinaron las opiniones de 5145 personas con discapacidad, a través de la Encuesta Nacional de Discriminación 2017, comparando la percepción de prejuicios de las personas con discapacidad a través de la edad, el género, el nivel socioeconómico, el tamaño de la localidad y el índice de desarrollo humano (IDH). El análisis factorial confirmatorio arroja una estructura con dos factores: prejuicios endogrupales y exogrupales. Los resultados indican que los adultos mayores, las personas que pertenecen a estratos sociodemográficos bajos y quienes habitan en localidades con un IDH bajo enfrentan mayores prejuicios en la escala total y en prejuicios endogrupales. Se discute el impacto del envejecimiento y la disponibilidad de recursos sociales en la percepción de prejuicios de las personas con discapacidad.
Palabras clave: discapacidad; prejuicios; discriminación; actitudes; estigma
Resumo:
Entre as barreiras sociais enfrentadas pelas pessoas com deficiência estão os preconceitos, definidos como atitudes de aversão e hostilidade por pertencer a um grupo, sob as quais são atribuídas condições indesejáveis. A percepção do preconceito das pessoas com deficiência pode ser determinada por fatores ligados a variáveis sociodemográficas como idade, gênero, nível socioeconômico, tamanho da localidade e Índice de Desenvolvimento Humano (IDH), porém, poucos estudos têm focado em diferenciar as experiências de pessoas com deficiência, especialmente no contexto mexicano. Esta pesquisa analisa as opiniões de 5,145 pessoas com deficiência, por meio da Encuesta Nacional de Discriminación (ENADIS) 2017, usando análise de variância. A análise fatorial confirmatória produz uma estrutura com dois fatores: um endógeno e outro exógeno. Os resultados indicam que idosos, pessoas que vivem em estratos sociodemográficos baixos e que vivem em localidades com baixo IDH enfrentam maior preconceito. Discute-se o impacto do envelhecimento e da disponibilidade de recursos sociais na percepção do preconceito das pessoas com deficiência.
Palavras-chave: deficiência; preconceito; discriminação; atitudes; estigma
Received: 27/10/2022
Accepted: 27/11/2023
Historically, people with disabilities (PD) have been a group excluded from accessing their fundamental rights to actively participate at an economic, social, political and cultural level (Ainscow et al., 2014; Comisión Económica para América Latina y el Caribe, 2021; Instituto Nacional de Estadística y Geografía (INEGI), 2019; Organización Mundial de la Salud (OMS), 2011; Organización de las Naciones Unidas, 2015; Peña & Estay, 2019; Pinilla-Roncancio, 2015). However, in recent years a paradigm shift has taken place, recognizing that disability is not reduced to a condition, illness or personal affectation (physical or psychological), but rather arises in the interaction of the individual with his or her social environment, when there are no sufficient conditions for their full inclusion (García-Vásquez, 2015; Mexico, 2011; Oliver, 1998, 2013; Rembis, 2010; Shakespere, 2006). This paradigm, which is known as the social model of disability, has generated notable progress in terms of civil rights for this group, although physical, social and attitudinal barriers still persist.
In most cases, institutions (e.g. schools, universities, or government buildings) are not prepared to include PD, especially when they come from less economically privileged backgrounds (Cruz & Casillas, 2017; Garín & Suárez, 2016; Pinilla-Roncancio, 2015). The existence of prejudices associated with the abilities of PDs to work, participate in competitive activities and acquire skills, are some of the causes of the invisibility of this group (INEGI, 2016; OMS, 2011; Pinilla-Roncancio, 2015). In this sense, prejudices are defined as attitudes of aversion and hostility towards a person for belonging to a group and/or having a certain characteristic, under which undesirable conditions are assigned to them. Prejudices usually spread in the form of socially accepted and justified opinions about PDs, which ultimately affect their social relationships (INEGI, 2016; Rodríguez, 2006).
The literature on prejudice and group analysis has documented that there is a tendency to favorably rate people who are considered close or familiar compared to those who are perceived as distant or strangers (Allport, 1954; Babik & Gardner, 2021; Harder et al., 2019; Nowicki et al., 2014; Pettigrew, 1979). According to the theory of ultimate attribution error, Pettigrew (1979) points out that the negative attributes of the group of belonging (ingroup) are normally attributed to external, situational and temporary factors, while the negative attributes of external groups (outgroup) are conceived as internal, dispositional and immutable. This implies that the negative evaluations made of PD at a global level tend to be perceived as permanent, immutable and even natural. For their part, according to the stereotype content model, Fiske et al. (2002) postulate that stereotypical beliefs are based on two dimensions: competitiveness (ability to advance in the social hierarchy) and warmth (ability to damage or disturb the status quo). From this theory, the PD group is perceived as warm and uncompetitive, which usually translates into paternalistic and condescending attitudes (Nario-Redmond et al., 2019).
Currently, a distinction is made between classic prejudices, which refer to openly hostile expressions about PD, and modern prejudices, which are manifested in a more subtle way (Akrami et al., 2006; Nario-Redmond et al., 2019). On the other hand, a distinction is also made between explicit prejudices (manifestations over which the person has voluntary control and are those that are typically measured through self-report questionnaires) and implicit prejudices (which are manifested involuntarily or with little control) (Harder et al., 2019; Nario-Redmond et al., 2019). The presuppositions and cognitive biases, as well as the prejudices and discriminatory acts faced by PDs, have been defined as “ableism” (Dunn, 2019; Nario-Redmond, 2020). It is important to note that PDs can also hold prejudices towards their own group, since they tend to internalize discriminatory narratives in their environment (Nario-Redmond et al., 2019).
Although PDs are commonly referred to as a monolithic, homogeneous group, the prejudices they face can vary considerably depending on their individual characteristics, personal history, and social environment (Pinilla-Roncancio, 2015; Rembis, 2010; Rodríguez, 2006). Social and territorial variables directly or indirectly affect the degree of social exclusion of the DPs (Pinilla-Roncancio, 2015). The literature suggests that, among PD, the perception of prejudice is related to contact with others with the same condition, their educational level, gender, ethnic origin, type of disability and age (Alvarez-Galvez & Salvador-Carulla, 2013; Harder et al., 2019).
In relation to gender, the explicit prejudices manifested by PDs vary depending on the measurement method. For example, Harder et al. (2019) concluded that men with disabilities prefer to spend more time with people without disabilities, while other studies suggest that women with disabilities show a greater inclination toward “feeling discriminated against because of their disability” (Branco et al., 2019; Dammeyer & Chapman, 2018). Regarding age, a large percentage of PDs are also older adults (INEGI, 2019; OMS, 2011). However, there is little knowledge about the impact that age has on the perception of prejudice (Ruggieri & Cuesta, 2018). The available evidence seems to indicate that the perception of prejudice among PDs increases significantly as they reach old age (Alvarez-Galvez & Salvador-Carulla, 2013; Branco et al., 2019; Harder et al., 2019).
On the other hand, the prevalence of disability in younger age groups varies internationally from 0.4 % to 12.7 %, depending on the study and the evaluation tool (OMS, 2011). In Mexico, it is estimated that 8.8 % of the population between 5 and 19 years old has some disability (INEGI, 2019). It has been observed that children with disabilities are more likely to present socio-emotional problems, low levels of social integration with their peers and poor attention in schools (Anatolievna, 2020; Rosa & Menezes, 2019; Santa Cruz et al., 2021). When analyzing the situation of the PD according to the size of the locality in which they live, it has been pointed out that in the large cities of Latin America there is no clear strategy regarding the design of public space and accessibility (Linares-García et al., 2018; Rairan et al., 2017), however, the extent to which this may affect PDs’ perception of prejudice remains understudied.
Empirical evidence shows that the most consistent predictions of social achievement are made based on class situation and the residential area where one lives (Rodríguez, 2006). Consequently, the socioeconomic level represents a determining aspect of the self-determination condition of the PD (Álvarez-Aguado et al., 2021; Alvarez-Galvez & Salvador-Carulla, 2013). A considerable percentage of poor people in developing countries are also PD, and households with PD are at higher risk of poverty (Elwan, 1999; Pinilla-Roncancio, 2015). In part, this is explained by the fact that PDs will not achieve the same levels of well-being as a person without disabilities, even if they have comparable economic resources, due to the costs derived from their specific needs, such as therapies or medical treatments, etc. (Pinilla-Roncancio, 2015).
In addition to the above, PDs generally have lower levels of education, lower insertion in the workplace and lower access to health services, factors related to the Human Development Index (HDI). The HDI is an indicator formulated by the United Nations Development Program (UNDP), and represents a synthesis of the status of a given locality based on the analysis of three dimensions: health, education and income (PNUD, 2014). The HDI allows us to appreciate a general overview of the level of inclusion/exclusion in which its inhabitants find themselves in general, and the PD in particular. (Peña & Estay, 2019). The level of human, social and economic development of the place of residence influences the type and quality of opportunities and services available to all members of society, including DPs (Pinilla-Roncancio, 2015). For example, it has been found that PDs with high levels of education (Harder et al., 2019) and who live in countries with more developed health systems (Alvarez-Galvez & Salvador-Carulla, 2013) show a lower perception of prejudice.
According to the social model of disability, the prejudices faced by PDs are related to the barriers found in their social environment. From this perspective, people with similar deficiencies may find themselves in different situations of exclusion, depending on their opportunities to access services such as health, education, employment, etc. On the other hand, the literature indicates that age and gender can also make important differences in the perception of prejudice in PDs. However, there are few studies that examine these differences, especially in the Mexican context. To help fill this gap, the present work answers the following research question: How does the open and hostile expression of internalized prejudices by PDs vary based on personal and social variables? As a hypothesis, the groups that are at greater risk of discrimination and that, therefore, could face greater prejudice are: a) women, b) older adults, c) people of low socio-demographic level and d) people who live in small towns with low rates of human development. To test these hypotheses, the average score of these groups was compared, using variance analysis, based on the responses collected in the National Discrimination Survey 2017 (INEGI, 2018; 2019; 2023) in Mexico.
Method
Sampling
The ENADIS design presented a probabilistic, two-stage, stratified and cluster sampling, taking into account the 32 states of the Mexican Republic, seeking the representativeness of the sample at the national level. In its design, four socio-demographic strata were formed into which all the sampling units of the country were grouped (that is, the homes that were the subject of the study). This stratification considered the socio-demographic characteristics of the inhabitants of the homes, as well as their physical characteristics and equipment, expressed through 34 indicators (INEGI, 2018).
The states were grouped according to their HDI based on data published by the UNDP (2015), which is represented by a score that ranges from 0 to 1, with the world average being 0.700. The calculation of the HDI of a locality was carried out based on the following indicators: life expectancy at birth (health), average years of schooling, expected years of schooling (education) and gross national income (GNI) per capita (income). The classification was done in four levels: eight states were classified as very high HDI, with a score between 0.759 and 0.830 (Baja California Sur, Baja California Norte, Coahuila, Colima, Mexico City, Nuevo León, Querétaro and Sonora), eight were classified as having a high HDI, with a score between 0.743 and 0.758 (Aguascalientes, Campeche, Jalisco, State of Mexico, Morelos, Quintana Roo, Sinaloa and Tamaulipas), eight were classified as medium-low HDI, with a score between 0.721 and 0.742 (Chihuahua, Durango, Hidalgo, Nayarit, San Luis Potosí, Tabasco, Tlaxcala, Yucatán) and finally eight states were located as a low level, with a score between 0.667 and 0.720 (Chiapas, Guanajuato, Guerrero, Michoacán de Ocampo , Oaxaca, Puebla, Veracruz and Zacatecas).
Participants
The database with the participants was taken from the official INEGI site (2023), corresponding to the module 2 questionnaire, whose target population is people with disabilities, that is, those who indicated having any of the following characteristics: 1. Difficulties walking, going up or down steps using their legs; 2. Seeing, even when wearing glasses; 3. Moving or using their arms or hands; 4. Learning, remembering or concentrating due to an intellectual condition; 5. Hearing, even when using a hearing aid; 6. Talking or communicating; 7. Bathing, dressing or eating; and 8. Carrying out daily activities due to an emotional or mental condition. The characteristics of the study sample can be seen in Table 1.
Table 1: Description of the sociodemographic characteristics of the study participants
Note: Based on INEGI (2019)
Instrument
The ENADIS 2017 consists of three instruments (General Questionnaire, Opinions and Experiences Questionnaire, and Module Booklet). Its purpose was to collect basic information about the selected home and the people who make up the household, as well as explore the opinion and experiences of discrimination of the target population (Indigenous people, people with disabilities, religious diversity, older adults, girls and boys, adolescents and young people, women and experiences of discrimination), which is collected from the module booklets. The present work only took up the module 2 booklet, aimed at people with disabilities, recovering the responses of the participants regarding the prejudice section, evaluated through five questions (see Table 2). The selected questions can be characterized as expressions of classic and explicit prejudices towards people with disabilities.
Table 2: ENADIS 2017 questions included in this study
Note: Based on INEGI (2016)
First, the reliability of the scale was evaluated using McDonald’s Omega coefficient, obtaining a reliability index of .75, which is considered acceptable. Next, the construct validity was evaluated through a confirmatory factor analysis (CFA), based on the hypothesis that the five prejudice questions are grouped into a single dimension. The extraction method was diagonal weighted least squares, as it is considered appropriate for dichotomous variables (Cheng-Hsien, 2016). The model was evaluated using the following goodness of fit indices: chi square with associated probability (X², p) greater than .05, general fit index (GFI) greater than .95, root square error of the mean of approximation (RMSEA) with values between .05 and .08, square root mean squared residuals (SRMR) close to 0.05 (Valdés-Cuervo et al., 2019). Given that the goodness-of-fit indices showed unfavorable results, it was decided to test a two-factor solution. The presence of a factor with two items is justified as long as the correlation is high between them and low with the rest, and the interpretability of the factor is maintained (Worthington & Whittaker, 2006). The first factor was named ingroup prejudices, since it represents judgments that the PDs make about their own abilities and was formed by questions 1 and 2. The second factor was named outgroup prejudices, since they represent judgments that the PDs attribute to the society or other people, and was made up of questions 3, 4 and 5. In this case, the correlation between items 1 and 2 (ingroup) was moderate (.57), while with the rest it was low (between .38 to .18). The literature indicates that the X² test can lead to rejecting reasonably appropriate solutions when working with large samples, therefore, upon observing that the rest of the indicators showed a good fit, it was decided to retain the model. The results of both models can be seen in Table 3. The structure of the bifactor model, the standardized covariance between the factors and the explanation coefficients for each of the questions is seen in Figure 1.
Table 3: Goodness-of-fit indices of the unifactor and bifactor models
Note: The extraction method used was diagonal weighted least squares. 1F = unifactor model, 2F = two-factor model.
Figure 1: Structure of the bifactor model of prejudice, factor loadings and covariance between factors
Procedure
For the present study, the data obtained in the ENADIS 2017, carried out by the INEGI (2016), were used. The interviews were carried out face to face following a protocol, taking place between August 21 and October 13, 2017. The ENADIS 2017 study population was all people in the household with the following characteristics: 12 years or older of age, indigenous speakers or self-identified, 12 years and over with disabilities, 12 years and over belonging to religious diversity, 60 years and over, 9 to 11 years of age, 12 to 29 years of age and women 18 years and older. A total of 39,101 homes participated. The present study returned to the participants who indicated that they belonged to the group of people with disabilities.
To download the database, the authors entered the official site of the INEGI (2023), accessing the Encuestas (Surveys) section, then the Especiales (Specials) section, where finally the Encuesta Nacional de Discriminación (ENADIS), version 2017 (National Discrimination Survey (ENADIS), version 2017) section is located. Once inside this section, the Datos Abiertos (Open Data) section was accessed, where a button to download the database is found. By pressing the download button, a zip file was obtained with the name “conjunto_de_datos_enadis2017_cvs.zip” (enadis2017_dataset_cvs.zip), which in turn contains 14 folders and a CVS file named “0_indice_tablas_enadis2017.cvs” (0_tables_index_enadis2017.cvs). This file indicates the name of the questionnaire that corresponds to each folder. Next, the folder named “tdiscapacidad_enadis2017” (tdisability_enadis2017) was extracted, where there are five more folders: “catalogos” (catalogs), “conjunto_de_datos” (data_set), “diccionario_de_datos” (data_dictionary), “metadatos” (metadata) and “modelo_entidad_relación” (entity_relationship_model).
The database with the responses of the participants in this study was found within the “conjunto_de_datos” (data_set) folder. Once the database was obtained, the modifications that were considered pertinent were made to the names and labels of the variables, resulting in the version that was finally used to perform the statistical analyses. In addition to the above, the participants were grouped by age (in 10-year intervals), and the groups belonging to the different levels of the HDI were created based on the state of the Mexican Republic in which they are located.
Data analysis sequence
First, construct validity was evaluated using the CFA method. Next, the reliability of the scale was evaluated using McDonald’s omega index. Subsequently, the Student’s t test was used to compare the participants by gender and the one-way analysis of variance (One Way ANOVA) was used to compare them by age group, sociodemographic stratum, level of human development and size of the town. It is assumed that the analysis of variance is sufficiently robust when large samples are available (Page et al., 2003). Prior to the analysis, it was verified that the assumption of homogeneity of variance was met, through Levene’s Test. In turn, the effect size and statistical power were calculated (Cárdenas & Arancibia, 2014). On the other hand, Scheffe’s post hoc test was used to visualize the groups between which the difference was established. In the case where the assumption of homogeneity of variance was not met, the ANOVA test with Welch correction and the Games-Howell post hoc test were used. The analyzes were carried out in the Rstudio software version 4.2.0 (R Core Team, 2023), using the packages DescTools (Signorell, 2023), lavaan (Rosseel, 2012), MSchoR (Mair, 2020), psych (Revelle, 2023), RcmdrMisc (Fox & Marquez, 2023) and rsatix (Kassambara, 2023).
Results
First, descriptive analyzes were carried out with the full prejudice scale, as well as with the outgroup and ingroup prejudice variables. Full scale scores indicate that participants answered “yes” on average to 3 of the 5 statements, suggesting a moderate level of internalized bias about people with disabilities. The outgroup prejudice score is above the theoretical mean, unlike the ingroup prejudice score, which is below. On the other hand, the skewness and kurtosis scores suggest a normal distribution (see Table 4).
Table 4: Descriptive statistics of ingroup, outgroup and total scale prejudices
Subsequently, comparisons of means between groups were carried out for the complete scale and outgroup and ingroup prejudices, the results of which are detailed in Table 5. Regarding the results by gender, although significant differences were obtained both in the complete scale, as in outgroup and ingroup prejudice, with a higher score for women (which indicates that in general they perceive more prejudice) the effect size did not reach the minimum acceptable, which means that it has no practical value. Subsequently, the participants were compared by age. Significant differences were obtained for the full scale and ingroup and outgroup prejudices. However, the effect size only reached a practical value for the total scale and for ingroup prejudice. The post hoc analysis showed that there are significant differences between multiple age groups, with the constant that prejudice increases with age. The differences between groups can be seen in Table 6.
In relation to the size of the locality, significant differences were found in the complete scale and in ingroup prejudices; however, only practical value was achieved for ingroup prejudices. The post hoc test reveals that it is in small towns where PDs show greater prejudice. Regarding the sociodemographic stratum, significant differences were found in the total scale, outgroup and ingroup prejudices; however, a practical value was only reached on the total scale and ingroup prejudices. Post hoc tests revealed differences between multiple groups (specifically: very high and low, very high and medium low, and medium low and medium high). The trend was that groups with a lower sociodemographic level showed higher scores on the prejudice scale. Finally, regarding the HDI, significant differences were found for the total scale, outgroup and ingroup prejudices, but no practical value was found for any of the variables. Due to the above, Student t tests were carried out, comparing only the scores of the groups with the largest difference.
The following results were obtained: Total scale t = -6.20; p < .001; d = -0.25, outgroup prejudice t = -4.12; p < .001; d = -0.16, and ingroup prejudice t = -5.98; p < .001; d = 0.24. Practical value is observed for the total scale and ingroup prejudice, with higher prejudice scores for participants who are in locations with a low HDI level.
Table 5: Descriptive statistics and variance analysis for the prejudice score and socio-demographic variables of people with disabilities
Note: Statistical power was > 0.80 in all cases.
Table 6: Results of the post hoc test when comparing the mean in the perception of prejudice on the total scale by age groups of people with disabilities
Discussion and conclusions
According to the social model, disability is not limited to an individual deficiency, but arises in the interaction of the person with their environment, when spaces (material or symbolic) are constructed from a normalizing perspective, which imagines and idealizes an average person (Cruz & Casillas, 2017; Oliver, 2013; Shakespere, 2006). From this perspective, prejudices become obstacles that naturalize the situation of exclusion of PDs. However, although it is common to refer to PDs as if they were a univocal group, there are personal and social conditions that impact their experiences of discrimination (Pinilla-Roncancio, 2015; Rembis, 2010; Rodríguez, 2006). This research shows significant differences according to age, social stratum and characteristics of the locality (size and HDI). On the other hand, the CFA of the prejudice questionnaire, proposed by ENADIS 2017, shows the existence of two underlying factors: outgroup prejudices, which represent the perception that PDs have about how they are seen by society, and ingroup prejudices, which represent judgments about their own capabilities. From the theory of the ultimate attribution error (Pettigrew, 1979), this differentiation is explained by the existence of intergroup biases, that is, a tendency to judge differently what we consider close or distant from ourselves. Ultimately, the present study shows that the differences found seem to refer to the judgments that PDs make about their own capabilities (ingroup prejudices). These differences are discussed in detail below.
In relation to differences in perceived prejudice by gender, the results support what was described by Branco et al. (2019) and Dammeyer and Chapman (2018), noting that it is women with disabilities who report greater discrimination compared to men. Added to the problems associated with gender roles (gender violence, wage gap, allocation of care for others, etc.) are attitudes of paternalism, infantilism and ableism regarding disability (Cobeñas, 2018; Cruz, 2004; Morris, 1993; Pinilla-Roncancio, 2015; Rodríguez, 2011). However, it is necessary to point out that the statistical power turned out to be very low, which calls into question the validity of these results. Various authors (Cobeñas, 2018; Rodríguez, 2011) affirm that the differences between men and women tend to become invisible if a gender perspective is not adequately introduced in the methodological design, so it is possible that the questions used in the present study fail in pointing out relevant situations to understand the prejudices that women with disabilities face, for example, when recognizing their right to exercise their sexuality, study or carry out independent activities outside the home, etc.
On the other hand, differences were found between age groups. In general, the older you are, the greater the prejudices. This contradicts what was found by Harder et al. (2019), who point out a non-linear relationship between age and the perception of explicit prejudices about disability. The results of this study show a trend that is increasing, and at no time decreasing. Possible explanations for these differences could be attributed to the measurement instruments used, cultural differences, or the fact of studying only people with disabilities. With all this, the hypothesis is reinforced that older adults with disabilities face a greater risk of exclusion. According to the stereotype content model, both PDs and older adults are usually perceived as uncompetitive and dependent, which leads to them being treated in a condescending and over-protective manner (Fiske et al., 2002; Nario-Redmond et al., 2019). In this regard, Branco et al. (2019) add that, like PD, older adults are more vulnerable to social isolation and face prejudices related to the perception of the body, autonomy, and the justification of their disability with biological explanations. Various studies indicate that both groups are at greater risk of functional dependence (Escobar et al., 2012; Stuck et al., 1999; Vargas-Acevedo et al., 2017) which could be reflected in their tendency to respond more in agreement with in-group prejudices, related to their capabilities and potentials. Therefore, to promote the autonomy of PDs in adulthood, it is necessary to have an accepting environment that allows them to continue acquiring new skills (Ruggieri & Cuesta, 2018).
In the present study, significant differences were also found in the prejudices of PDs, depending on their sociodemographic level. These differences are observed both on the general scale and in in-group prejudices, being more pronounced among those belonging to low sociodemographic strata. This supports what was stated by authors such as Álvarez-Aguado et al. (2021) and Rodríguez (2006), who consider that socioeconomic status plays a crucial role in the self-determination of PDs. From the perspective of the social model of disability, the relationship between disability and factors such as poverty, low educational levels, difficulties in finding a job and limited access to health services, seems to influence the perception of prejudice of PD (Pinilla -Roncancio, 2015), especially in the assessment of their capabilities (ingroup prejudices). In close relation to the above, the influence of the locality’s HDI was explored. In this context, significant differences were observed only between the groups with very high and low HDI, indicating that those residing in areas with a low HDI exhibit higher levels of prejudice. This pattern, similar to that found in low socioeconomic strata, highlights the relationship between the socioeconomic environment and the perception of prejudice.
Pinilla-Roncancio (2015) explains these differences by arguing that, to cover the needs of a PD, a greater investment of economic resources is necessary. However, when considering the degree of marginalization of the community in which they live, it is possible to deduce that the ease of access to education, health and employment opportunities also translates into greater opportunities for social inclusion for the DP, which would explain why PDs who live in localities with a high HDI show less prejudice. The above supports the hypothesis that the perception of prejudice is lower among PDs with higher levels of education and who live in sectors with more developed health systems (Alvarez-Galvez & Salvador-Carulla, 2013; Harder et al., 2019). Finally, the results indicate that PDs who live in small towns show greater ingroup prejudices. The above may be related to the absence of education and employment opportunities for people with disabilities in small towns (for example in a rural context), which does not allow them to develop their capabilities, skills and abilities that ultimately translate into a more autonomous life.
Limitations and future lines of research
It is considered a limitation of this study that it was not possible to differentiate the responses of the participants based on the type of disability they present, which is a variable of great interest. In addition to the above, the ENADIS 2017 proposal is based on classic and explicit prejudices, so future lines of research could include the measurement of implicit and modern prejudices about disability, associated with paternalism, pity or envy towards the PDs. Likewise, it is essential to differentiate the experience of PD based on gender, and how gender roles influence the prejudices faced by women with disabilities. Future research should focus on shedding light on what factors determine the perception of PD prejudice in adulthood. Finally, it is of great interest to study why the prejudices expressed by PD decrease as their level of education and the quality of available health services increase.
References
Ainscow, M., Dyson, A., & Weiner, S. (2014). From exclusion to inclusion: A review of international literature on ways of responding to students with special education needs in schools. En-clave Pedagógica, 13, 13-30.
Akrami, N., Ekehammar, B., Claesson, M., & Sonnander, K. (2006). Classical and modern prejudice: Attitudes toward people with intellectual disabilities. Research in Developmental Disabilities, 27(6), 605-617. https://doi.org/10.1016/j.ridd.2005.07.003
Allport, G. W. (1954). The Nature of Prejudice. Addison Wesley.
Álvarez-Aguado, I., Vega, C. V., Spencer, G. H., González-Carrasco, F., Jarpa, A. M., & Campaña, V. K. (2021). Autodeterminación en personas con discapacidad intelectual que envejecen y algunas variables que inciden en su desarrollo. Interdisciplinaria, 38(3), 139-154. https://doi.org/10.16888/interd.2021.38.3.8
Alvarez-Galvez, J., & Salvador-Carulla, L. (2013). Perceived discrimination and self-rated health in Europe: Evidence from the European Social Survey (2010). PLOS ONE, 8(9), 1-10. https://doi.org/10.1371/journal.pone.0074252
Anatolievna, E. Z. (2020). Inclusión de los niños con capacidades diferentes en escuelas regulares en México: propósitos y realidad. Andamios, 17(43), 249-270. https://doi.org/10.29092/uacm.v17i43.774
Babik, I., & Gardner, E. S. (2021). Factors affecting the perception of disability: A developmental perspective. Frontiers in Psychology, 12, 1-26. https://doi.org/10.3389/fpsyg.2021.702166
Branco, C., Ramos, M. R., & Hewstone, M. (2019). The association of group-based discrimination with health and well-being: A comparison of ableism with other “Isms.” Journal of Social Issues, 75(3), 814-846. https://doi.org/10.1111/josi.12340
Cárdenas, M., & Arancibia, H. (2014). Potencia estadística y cálculo del tamaño del efecto en G * Power: Complementos a las pruebas de significación estadística y su aplicación en psicología. Salud y Sociedad, 5(2), 210-224. https://doi.org/10.22199/S07187475.2014.0002.00006
Cheng-Hsien, L. (2016). Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares. Behavior Research Methods, 48(3), 936-949. https://doi.org/10.3758/s13428-015-0619-7
Cobeñas, P. (2018). Investigar con mujeres con discapacidad: reflexiones epistemológicas y metodológicas desde el enfoque feminista-emancipador. Revista Brasileña de Estudios Pedagógicos, 99(251), 132-147. https://doi.org/10.24109/2176-6681.rbep.99i251.3473
Comisión Económica para América Latina y el Caribe. (2021). Personas con discapacidad y sus derechos frente a la pandemia de COVID-19: que nadie se quede atrás. Informes Covid-19. https://www.cepal.org/es/publicaciones/46600-personas-discapacidad-sus-derechos-frente-la-pandemia-covid-19-que-nadie-se
Cruz, M. P. (2004). Mujeres con discapacidad y su derecho a la sexualidad. Política y Cultura, (22), 147-160.
Cruz, R. V., & Casillas, M. Á. A. (2017). Las instituciones de educación superior y los estudiantes con discapacidad en México. Revista de la Educación Superior, 46(181), 37-53. https://doi.org/10.1016/j.resu.2016.11.002
Dammeyer, J., & Chapman, M. (2018). A national survey on violence and discrimination among people with disabilities. BMC Public Health, 18, 355. https://doi.org/10.1186/s12889-018-5277-0
Dunn, D. S. (2019). Outsider privileges can lead to insider disadvantages: some psychosocial aspects of ableism. Journal of Social Issues, 75(3), 665-682. https://doi.org/10.1111/josi.12331
Elwan, A. (1999). Poverty and Disability: A Survey of the Literature. https://documents1.worldbank.org/curated/en/488521468764667300/pdf/multi-page.pdf
Escobar, B. M. Á., Puga, G. M. a. D., & Martín, B. M. (2012). Análisis de la esperanza de vida libre de discapacidad a lo largo de la biografía: De la madurez a la vejez. Gaceta Sanitaria, 26(4), 330–335. https://doi.org/10.1016/j.gaceta.2011.12.016
Fiske, S. T., Cuddy, A. J. C., Glick, P., & Xu, J. (2002). A model of (often mixed) stereotype content: Competence and warmth respectively follow from perceived status and competition. Journal of Personality and Social Psychology, 82(6), 878-902. https://doi.org/10.1037/0022-3514.82.6.878
Fox, J., & Marquez, M. (2023). RcmdrMisc: R Commander Miscellaneous Functions. R package version 2.9-1. https://CRAN.R-project.org/package=RcmdrMisc
García-Vásquez, E. (2015). La discriminación por discapacidad como tema emergente en el contexto de los movimientos sociales contemporáneos. Revista de La Facultad de Medicina, 63(3). https://doi.org/10.15446/revfacmed.v63n3sup.50571
Garín, J., & Suárez, C. (2016). Inclusión y grupos en situación de vulnerabilidad: orientaciones para repensar el rol de las universidades. Sinéctica. Revista Electrónica de Educación, 46, 1-15.
Harder, J. A., Keller, V. N., & Chopik, W. J. (2019). Demographic, experiential, and temporal variation in ableism. Journal of Social Issues, 75(3), 1-24. https://doi.org/10.1111/josi.12341
Instituto Nacional de Estadística y Geografía. (2016). Diseño conceptual de la Encuesta Nacional sobre Discriminación (ENADIS) 2017. https://acortar.link/dXQ35Z
Instituto Nacional de Estadística y Geografía. (2018). Encuesta Nacional sobre Discriminación. Diseño muestral. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825100797
Instituto Nacional de Estadística y Geografía. (2019). Estadística a propósito del día internacional de las personas con discapacidad. Comunicado 638/19. https://acortar.link/sCTMf8
Instituto Nacional de Estadística y Geografía. (2023, 20 de noviembre). Encuesta Nacional sobre Discriminación (ENADIS) 2017. https://acortar.link/3UblcO
Kassambara, A. (2023). rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.2. https://CRAN.R-project.org/package=rstatix
Linares-García, J., Hernández-Quirama, A., & Rojas-Betancur, H. M. (2018). Accesibilidad espacial e inclusión social: experiencias de ciudades incluyentes en Europa y Latinoamérica. Civilizar: Ciencias Sociales y Humanas, 18(35), 115-128. https://doi.org/10.22518/usergioa/jour/ccsh/2018.2/a09
Mair, P. (2020). MPsychoR: Modern Psychometrics with R. R package version 0.10-8. https://CRAN.R-project.org/package=MPsychoR
Mexico. (2011, May 30). Ley General para la Inclusión de las Personas con Discapacidad. https://www.diputados.gob.mx/LeyesBiblio/pdf/LGIPD.pdf
Morris, J. (1993). Feminism and disability. Feminist Review, 43(1), 57-70. https://doi.org/10.1057/fr.1993.4
Nario-Redmond, M. R. (2020). ABLEISM. The Causes and Consequences of Disability Prejudice. John Wiley y Sons. https://doi.org/10.1002/9781119142140
Nario-Redmond, M. R., Kemerling, A. A., & Silverman, A. (2019). Hostile, benevolent, and ambivalent ableism: Contemporary manifestations. Journal of Social Issues, 75(3), 726-756. https://doi.org/10.1111/josi.12337
Nowicki, E. A., Brown, J., & Stepien, M. (2014). Children’s thoughts on the social exclusion of peers with intellectual or learning disabilities. Journal of Intellectual Disability Research, 58(4), 346-357. https://doi.org/10.1111/jir.12019
Oliver, M. (1998). ¿Una sociología de la discapacidad o una sociología discapacitada? In L. Barton (Ed.), Discapacidad y Sociedad (pp. 34–58). Morata.
Oliver, M. (2013). The social model of disability: Thirty years on. Disability and Society, 28(7), 1024-1026. https://doi.org/10.1080/09687599.2013.818773
Organización de las Naciones Unidas. (2015). Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible. https://unctad.org/system/files/official-document/ares70d1_es.pdf
Organización Mundial de la Salud. (2011). Informe mundial sobre la discapacidad. https://apps.who.int/iris/handle/10665/75356
Page, M. C., Braver, S. L., & MacKinnon, D. P. (2003). Levine´s guide to SPSS for analysis of variance. Routledge.
Peña, T. C. L., & Estay, S. J. G. (2019). La inclusión social de personas con discapacidad: un tema de agenda política-institucional. Acta Sociológica, (80), 101-120. https://doi.org/10.22201/fcpys.24484938e.2019.80.76293
Pettigrew, T. F. (1979). The ultimate attribution error: Extending Allport’s cognitive analysis of prejudice. Personality and Social Psychology Bulletin, 5(4), 461-476. https://doi.org/10.1177/014616727900500407
Pinilla-Roncancio, M. (2015). Disability and poverty: Two related conditions. A review of the literature. Revista Facultad de Medicina, 63(3), 113-123. https://doi.org/10.15446/revfacmed.v63n3sup.50132
Programa de las Naciones Unidas para el Desarrollo. (2014). Índice de Desarrollo Humano Municipal en México. https://acortar.link/dIG4HF
Programa de las Naciones Unidas para el Desarrollo. (2015). Índice de Desarrollo Humano para las entidades federativas, México 2015. https://acortar.link/2o45Uc
R Core Team. (2023). A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Austria. https://www.R-project.org/.
Rairan, F. S. G., López, J. R. C., Castro, L. A. G., Garzón, D. A. S., & Mosquera, N. R. (2017). Orientación de pasajeros con discapacidad visual dentro del Sistema de Transporte Masivo Transmilenio, mediante geolocalización satelital. Ingeniería, 22(2), 283-297. https://doi.org/10.14483/udistrital.jour.reving.2017.2.a08
Rembis, M. (2010). Yes, we can change: disability studies - enabling equality. Journal of Postsecondary Education and Disability, 23(1), 19-28.
Revelle, W. (2023). psych: Procedures for Psychological, Psychometric, and Personality Research. R package version 2.3.9. https://CRAN.R-project.org/package=psych.
Rodríguez, J. Z. (2006). Un marco teórico para la discriminación. https://www.conapred.org.mx/documentos_cedoc/marco teorico para la discriminacion-Ax.pdf
Rodríguez, P. (2011). Feminismos periféricos. Revista Sociedad y Equidad, 2, 23-45. https://doi.org/10.5354/rse.v0i2.14426
Rosa, L. R., & Menezes, A. B. (2019). Educational inclusion and social interaction: A literature review. Trends in Psychology, (2), 385-400. https://doi.org/10.9788/TP2019.2-07
Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. https://doi.org/10.18637/jss.v048.i02
Ruggieri, V., & Cuesta, J. L. G. (2018). Envejecimiento y trastorno del espectro autista. Medicina, 78, 69-74.
Santa Cruz, C., Espinoza, V., & Hohlberg, E. (2021). Problemas socioemocionales en niños con discapacidad auditiva, discapacidad visual y desarrollo típico. Revista Latinoamericana de Educación Inclusiva, 15(1), 95-116. https://doi.org/10.4067/s0718-73782021000100095
Shakespere, T. (2006). The Social Model of Disability. In L. J. Davis (Ed.), The Disability Studies Reader (pp. 195-203). Taylor y Francis Group.
Signorell, A., (2023). DescTools: Tools for Descriptive Statistics. https://andrisignorell.github.io/DescTools/
Stuck, A. E., Walthert, J. M., Nikolaus, T., Büla, C. J., Hohmann, C., & Beck, J. C. (1999). Risk factors for functional status decline in community-living elderly people: A systematic literature review. Social Science and Medicine, 48(4), 445-469. https://doi.org/10.1016/S0277-9536(98)00370-0
Valdés-Cuervo, A. A., García-Vázquez, F. I., Torres-Acuña, G. M., Urías-Murrieta, M., & Grijalva-Quiñonez, C. S. (2019). Medición en investigación educativa con apoyo del SPSS y el AMOS. Clave editorial.
Vargas-Acevedo, C. A., Alzate-Posada, M. L., López-Díaz, L., & Velásquez, V. F. (2017). Dolor en personas ancianas con dependencia: programa de visita domiciliaria adaptado culturalmente a población rural. Revista de Salud Pública, 19(4), 519-526. https://doi.org/10.15446/rsap.v19n4.43527
Worthington, R. L., & Whittaker, T. A. (2006). Scale development research: A content analysis and recommendations for best practices. The Counseling Psychologist, 34(6), 806-838. https://doi.org/10.1177/0011000006288127
Data availability: The dataset supporting the results of this study are available at the Instituto Nacional de Estadística y Geografía (INEGI) website: https://www.inegi.org.mx/programas/enadis/2017/#Datos_abiertos
How to cite: Sainz Palafox, M., Vera Noriega, J. A., Peña Ramos, M. O., & Tánori Quintana, J. (2024). Sociodemographic variables and prejudices perception from disabled people. Ciencias Psicológicas, 18(1), e-3109. https://doi.org/10.22235/cp.v18i1.3109
Authors’ contribution (CRediT Taxonomy): 1. Conceptualization; 2. Data curation; 3. Formal Analysis; 4. Funding acquisition; 5. Investigation; 6. Methodology; 7. Project administration; 8. Resources; 9. Software; 10. Supervision; 11. Validation; 12. Visualization; 13. Writing: original draft; 14. Writing: review & editing.
M. A. S. P. has contributed in 1, 2, 3, 6, 9, 13, 14; J. A. V. N. in 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14; M. O. P. R. in 2, 3, 6, 14; J. T. Q. in 1, 2, 3, 5, 6, 14.
Scientific editor in-charge: Dr. Cecilia Cracco.